

4501 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0104-0301 Rev.3.01 2005.02.07

(Ta = 25 °C)

DESCRIPTION

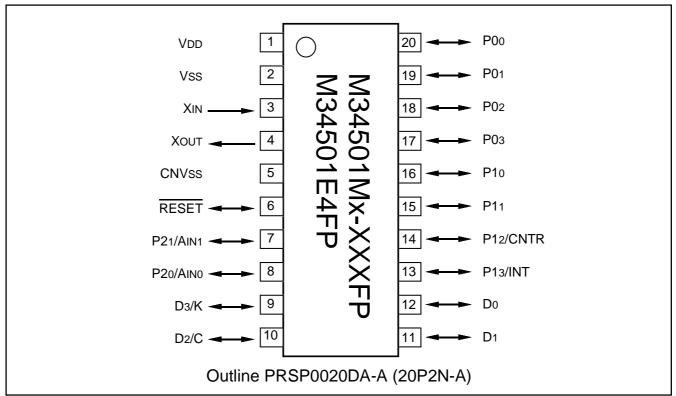
The 4501 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has a reload register), interrupts, and 10-bit A/D converter.

The various microcomputers in the 4501 Group include variations of the built-in memory size as shown in the table below.

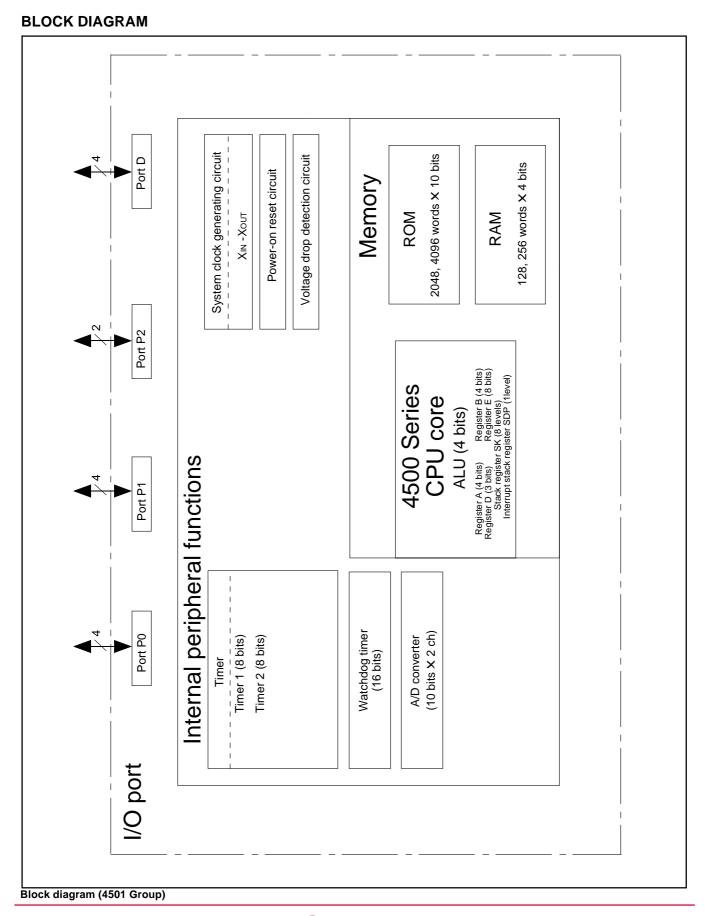
FEATURES

Timer 1 8-bit timer with a reload register
Timer 2 8-bit timer with a reload register
●Interrupt
●Key-on wakeup function pins12
●Input/Output port14
●A/D converter10-bit successive comparison method
■Watchdog timer
◆Clock generating circuit (ceramic resonator/RC oscillation)
●LED drive directly enabled (port D)
●Power-on reset circuit
● Voltage drop detection circuit VRST: Typ. 3.5 V

APPLICATION


Timers

Electrical household appliance, consumer electronic products, office automation equipment, etc.


Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34501M2-XXXFP	2048 words	128 words	PRSP0020DA-A	Mask ROM
M34501M4-XXXFP	4096 words	256 words	PRSP0020DA-A	Mask ROM
M34501E4FP (Note)	4096 words	256 words	PRSP0020DA-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4501 Group)

PERFORMANCE OVERVIEW

	Paramete	er	Function			
Number of ba	sic instruct	ions	111			
Minimum instruction execution time			0.68 μs (at 4.4 MHz oscillation frequency, in high-speed mode)			
Memory sizes	ROM	M34501M2	2048 words X 10 bits			
		M34501M4/E4	4096 words X 10 bits			
	RAM	M34501M2	128 words X 4 bits			
		M34501M4/E4	256 words X 4 bits			
Input/Output ports	D0-D3	I/O	Four independent I/O ports. Input is examined by skip decision. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.			
	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software.			
	P10-P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.			
	P20, P21	I/O	2-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports P20 and P21 are also used as AINO and AIN1, respectively.			
	С	I/O	1-bit I/O; Port C is also used as port D2.			
	K	I/O	1-bit I/O; Port K is also used as port D3.			
	CNTR	Timer I/O	1-bit I/O; CNTR pin is also used as port P12.			
	INT	Interrupt input	1-bit input; INT pin is also used as port P13.			
	AIN0, AIN1	Analog input	Two independent I/O ports. AIN0-AIN1 is also used as ports P20, P21, respectively.			
Timers	Timer 1		8-bit programmable timer with a reload register.			
	Timer 2		8-bit programmable timer with a reload register and has a event counter.			
A/D converter			10-bit wide, This is equipped with an 8-bit comparator function.			
	Analog in	put	2 channel (AIN0 pin, AIN1 pin)			
Interrupt	Sources		4 (one for external, two for timer, one for A/D)			
	Nesting		1 level			
Subroutine ne	esting		8 levels			
Device structu	ıre		CMOS silicon gate			
Package			20-pin plastic molded SOP (PRSP0020DA-A)			
Operating ten	nperature r	ange	−20 °C to 85 °C			
Supply voltag	е		2.7 to 5.5 V (System is in the reset state when the voltage is under the detection voltage of voltage drop detection circuit)			
Power dissipation	Active mo		1.7 mA (Ta=25°C, VDD = 5.0 V, 4.0 MHz oscillation frequency, in high-speed mode, output transistors in the cut-off state)			
(typical value)	RAM back	k-up mode	0.1 μ A (Ta=25°C, VDD = 5 V, output transistors in the cut-off state)			

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.
XIN	System clock input	Input	I/O pins of the system clock generating circuit. When using a ceramic resonator, connect
Хоит	System clock output	Output	it between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
D0-D3	I/O port D	I/O	Each pin of port D has an independent 1-bit wide I/O function. Each pin has an output latch. For input use, set the latch of the specified bit to "1." Input is examined by skip decision. The output structure is N-channel open-drain. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.
P00-P03	I/O	I/O	Port P0 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P20 and P21 are also used as AINO and AIN1, respectively.
Port C	I/O port C	I/O	1-bit I/O port. Port C can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port C has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port C is also used as port D2.
Port K	I/O port K	I/O	1-bit I/O port. Port K can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port K has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port K is also used as port D3.
CNTR	Timer input/output	I/O	CNTR pin has the function to input the clock for the timer 2 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. This pin is also used as port P12.
INT	Interrupt input	Input	INT pin accepts external interrupts. It has the key-on wakeup function which can be switched by software. This pin is also used as port P13.
AIN0-AIN1	Analog input	Input	A/D converter analog input pins. AIN0 and AIN1 are also used as ports P20 and P21, respectively.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D ₂	С	С	D2	P20	AIN0	AIN0	P20
D3	K	K	D3	P21	AIN1	AIN1	P21
P12	CNTR	CNTR	P12				
P13	INT	INT	P13				

- Notes 1: Pins except above have just single function.
 2: The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
 - 3: The input of P12 can be used even when CNTR (output) is selected.
 - 4: The input/output of P20, P21 can be used even when AIN0, AIN1 are selected.

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- External ceramic resonator
- External RC oscillation
- Clock (f(XIN)) by the external clock
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator.
- System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the bits 2 and 3 of the clock control register MR.

Table Selection of system clock

Regist	er MR	System clock	Operation mode
MR3 MR2 (Note 1)		(Note 1)	
0	0	f(XIN) or f(RING)	High-speed mode
0	1	f(XIN)/2 or f(RING)/2	Middle-speed mode
1	0	f(XIN)/4 or f(RING)/4	Low-speed mode
1	1	f(XIN)/8 or f(RING)/8	Default mode

Notes 1: The on-chip oscillator clock is f(RING), the clock by the ceramic resonator, RC oscillation or external clock is f(XIN).

2: The default mode is selected after system is released from reset and is returned from RAM back-up.

Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

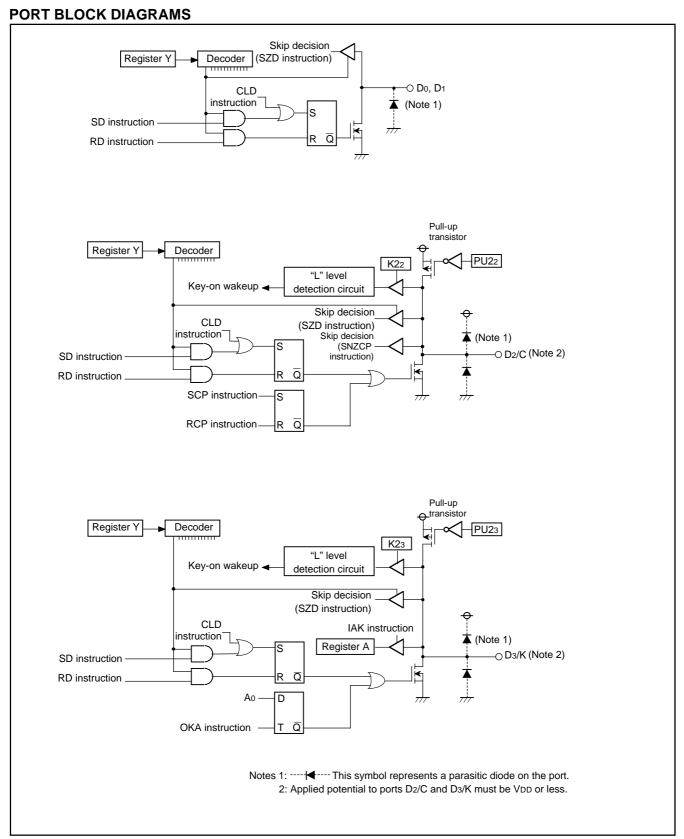
The machine cycle is the standard cycle required to execute the instruction.

PORT FUNCTION

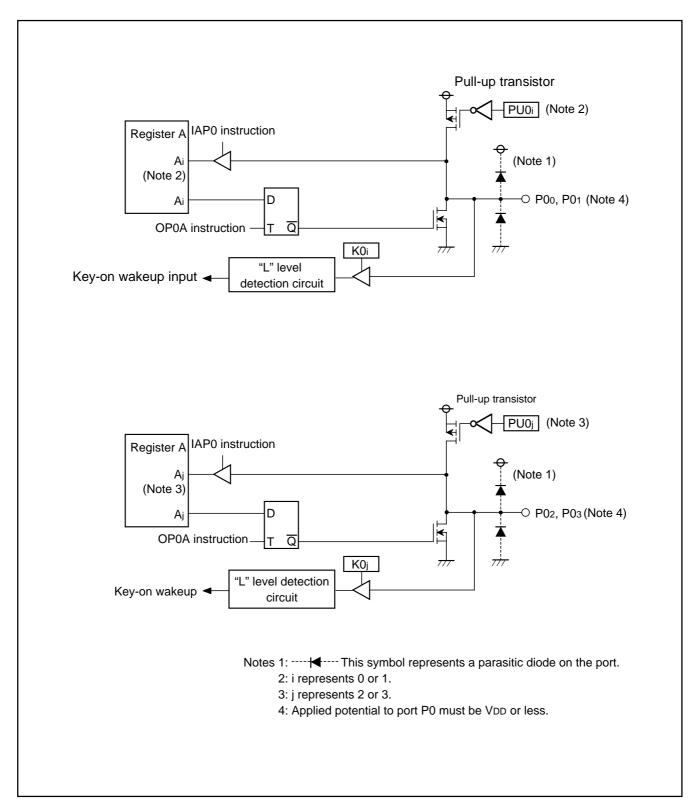
Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0, D1 D2/C D3/K	I/O (4)	N-channel open-drain	1	SD, RD SZD, CLD SCP, RCP SNZCP IAK, OKA	PU2, K2	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P0	P00-P03	I/O (4)	N-channel open-drain	4	OP0A IAP0	PU0, K0	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P1	P10, P11 P12/CNTR, P13/INT	I/O (4)	N-channel open-drain	4	OP1A IAP1	PU1, K1 W6, I1	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P2	P20/AIN0 P21/AIN1	I/O (2)	N-channel open-drain	2	OP2A IAP2	PU2, K2 Q1	Built-in programmable pull-up functions Key-on wakeup functions (programmable)

CONNECTIONS OF UNUSED PINS

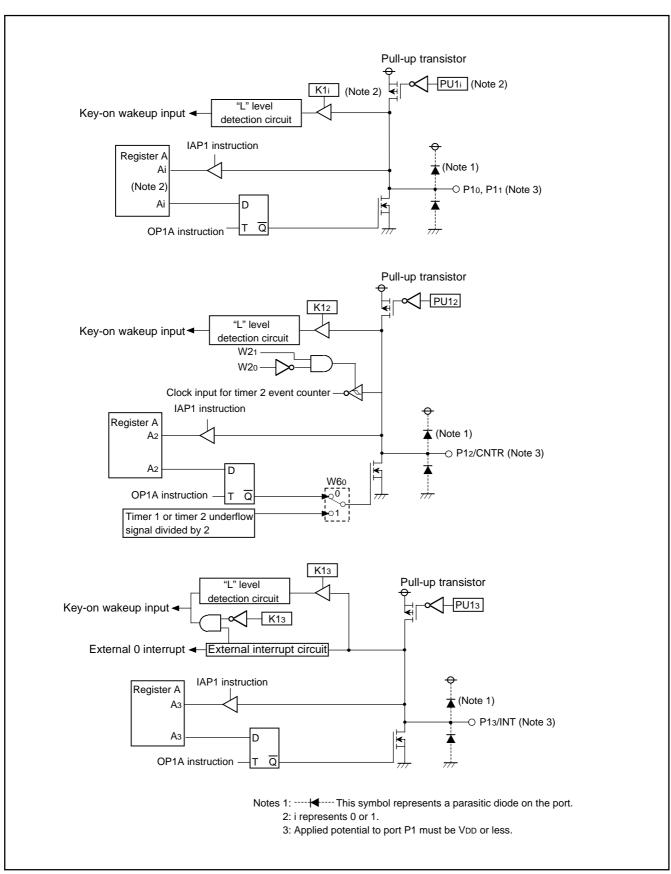
Pin	Connection	Usage condition
XIN	Connect to Vss.	System operates by the on-chip oscillator. (Note 1)
Хоит	Open.	System operates by the external clock.
		(The ceramic resonator is selected with the CMCK instruction.)
		System operates by the RC oscillator.
		(The RC oscillation is selected with the CRCK instruction.)
		System operates by the on-chip oscillator. (Note 1)
D0, D1	Open. (Output latch is set to "1.")	
	Open. (Output latch is set to "0.")	
	Connect to Vss.	
D2/C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
D ₃ /K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P00-P03	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P10, P11	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P12/CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P13/INT	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. The input to INT pin is disabled.
		(Notes 4, 5)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P20/AIN0	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P21/AIN1	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)

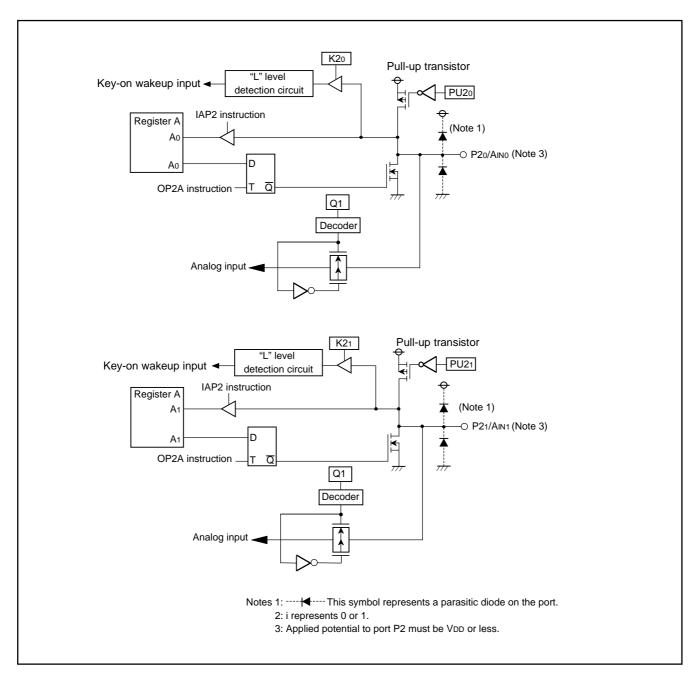

Notes 1: When the ceramic resonator or the RC oscillation is not selected by program, system operates by the on-chip oscillator (internal oscillator).

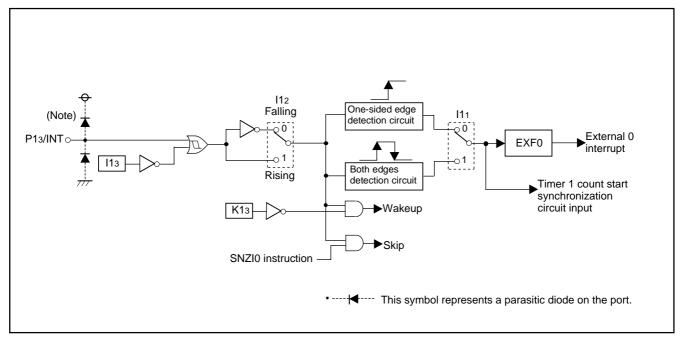
- 2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.
- 3: When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state. Do not select the key-on wakeup function.
- 4: When selecting the key-on wakeup function, select also the pull-up function.
- 5: Clear the bit 3 (I13) of register I1 to "0" to disable to input to INT pin (after reset: I13 = "0")


(Note when connecting to Vss)

• Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.




Port block diagram (1)


Port block diagram (2)

Port block diagram (3)

Port block diagram (4)

External interrupt circuit structure

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

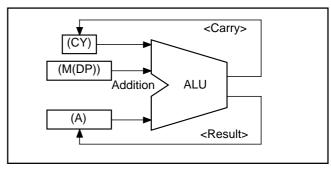


Fig. 1 AMC instruction execution example

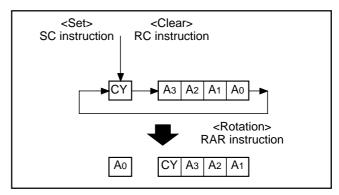


Fig. 2 RAR instruction execution example

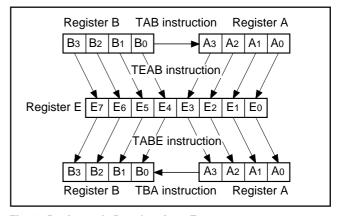


Fig. 3 Registers A, B and register E

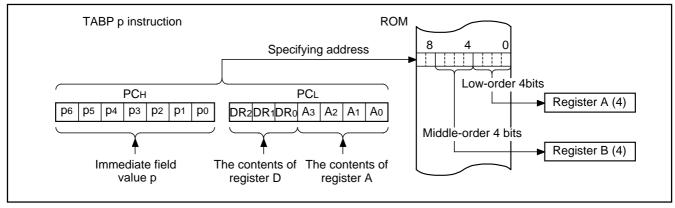


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

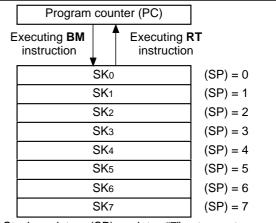
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- · performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

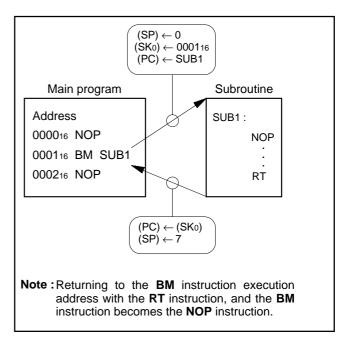


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

• Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

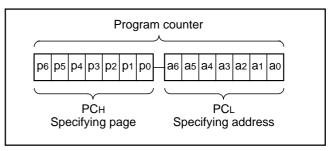


Fig. 7 Program counter (PC) structure

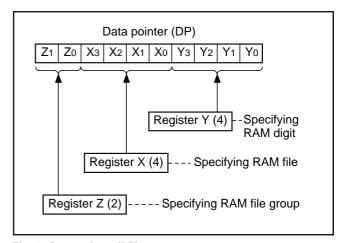


Fig. 8 Data pointer (DP) structure

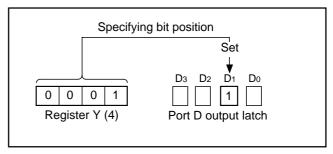


Fig. 9 SD instruction execution example

PROGRAM MEMOY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34501M4.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34501M2	2048 words	16 (0 to 15)
M34501M4	4096 words	32 (0 to 31)
M34501E4	4096 words	32 (0 to 31)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

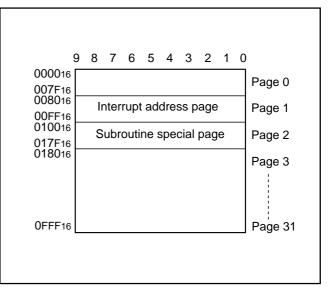


Fig. 10 ROM map of M34501M4/M34501E4

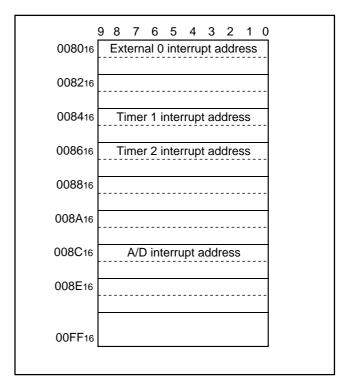


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34501M2	128 words X 4 bits (512 bits)
M34501M4	256 words X 4 bits (1024 bits)
M34501E4	256 words X 4 bits (1024 bits)

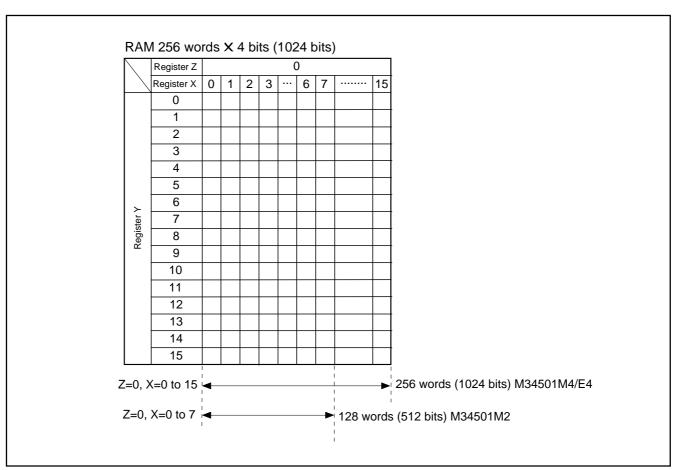


Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	A/D interrupt	Completion of A/D conversion	Address C in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
A/D interrupt	ADF	SNZAD	V22

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0"
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

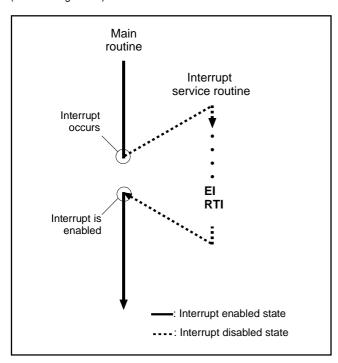


Fig. 13 Program example of interrupt processing

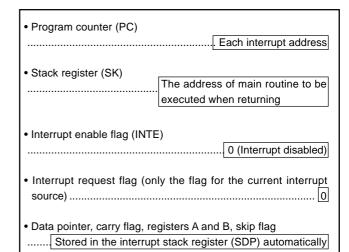


Fig. 14 Internal state when interrupt occurs

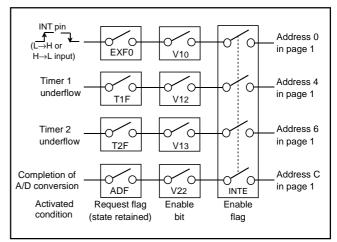


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1
 Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.
- Interrupt control register V2
 The A/D interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

	Interrupt control register V1	at	reset : 00002	at RAM back-up : 00002	R/W
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)	
V 13	V 13 Timer 2 interrupt enable bit		Interrupt enabled (SNZT2 instruction is invalid) (Note 2	2)
V12	V/do Timon d interment analys bit		Interrupt disabled (SNZT1 instruction is valid)		
V 12	Timer 1 interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2)		
V11	Not used	0	This bit has no function, but read/write is enabled.		
V 11	Not useu	1	This bit has no fair	ction, but read/write is chabled.	
\/10	V10 External 0 interrupt enable bit -		Interrupt disabled (SNZ0 instruction is valid)		
V 10			Interrupt enabled (SNZ0 instruction is invalid) (Note 2)		

Interrupt control register V2		at	reset : 00002	at RAM back-up : 00002	R/W
1/20	Not used	0	This bit has see for		
V23	V23 Not used		This bit has no function, but read/write is enabled.		
1/00	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)		
V Z 2			Interrupt enabled (SNZAD instruction is invalid) (Note 2)		
1/04	V21 Not used		This bit has no function, but read/write is enabled.		
V21	Not used		This bit has no fanotion, but road/write is chabled.		
Vac Not used		0	This bit has no function, but read/write is enabled.		
V20	V20 Not used				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V22), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

^{2:} These instructions are equivalent to the NOP instruction.

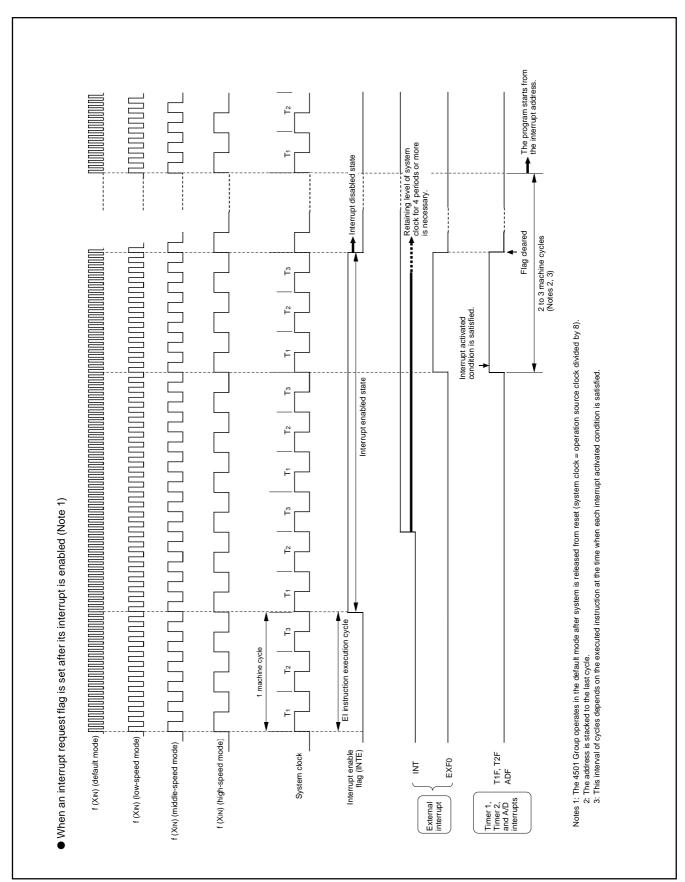


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4501 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	INT	When the next waveform is input to INT pin	I 11
		Falling waveform ("H"→"L")	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

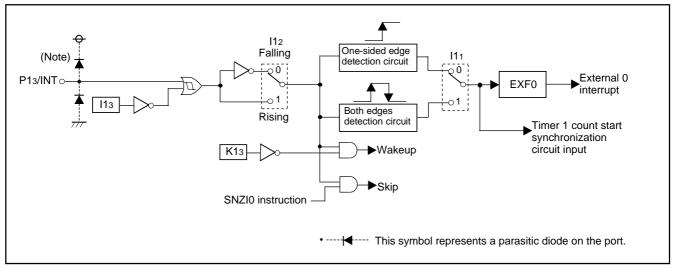


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to INT pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I1.
- 3 Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
l13	INT pin input control bit (Note 2)	0	INT pin input disab	bled	
113	in in put control bit (Note 2)	1	INT pin input enab	led	
	Interrupt valid way of arm for INIT pin/	0	,	"L" level of INT pin is recognized wi	th the SNZI0
l12	Interrupt valid waveform for INT pin/		instruction)/"L" level		
	return level selection bit (Note 2)	1	Rising waveform (' instruction)/"H" lev	'H" level of INT pin is recognized wi el	th the SNZI0
l1 ₁	INIT pip adda dataction circuit control bit	0	One-sided edge detected		
111	INT pin edge detection circuit control bit	1	Both edges detected		
l10	INT pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

(3) Notes on interrupts

- ① Note [1] on bit 3 of register I1
 When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18②).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

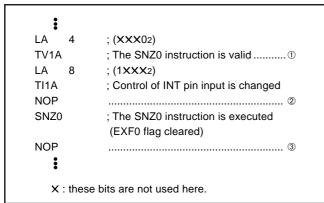


Fig. 18 External 0 interrupt program example-1

about the following notes.

- ② Note [2] on bit 3 of register I1
 When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful
- When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system

enters to the RAM back-up mode. (refer to Figure 1911).

Fig. 19 External 0 interrupt program example-2

- ③ Note [3] on bit 2 of register I1 When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1 is changed. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20②). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20③).

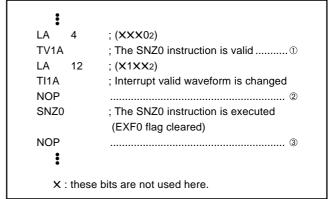


Fig. 20 External 0 interrupt program example-3

TIMERS

The 4501 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

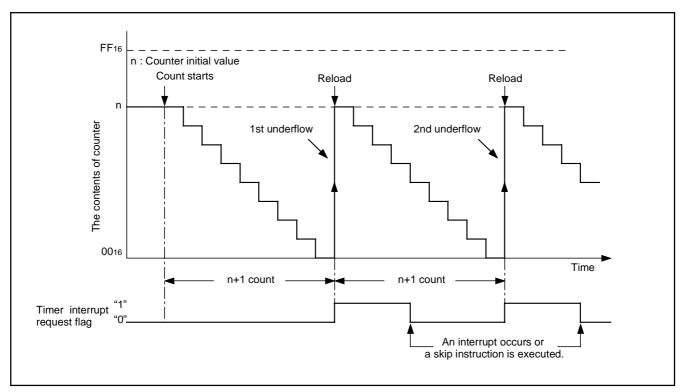


Fig. 21 Auto-reload function

The 4501 Group timer consists of the following circuits.

- Prescaler : frequency divider
- Timer 1 : 8-bit programmable timer
- Timer 2: 8-bit programmable timer
 (Timers 1 and 2 have the interrupt function, respectively)
- 16-bit timer

Prescaler and timers 1 and 2 can be controlled with the timer control registers W1, W2 and W6. The 16-bit timer is a free counter which is not controlled with the control register.

Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	Frequency divider	Instruction clock	4, 16	Timer 1 and 2 count sources	W1
Timer 1	8-bit programmable	Prescaler output (ORCLK)	1 to 256	Timer 2 count source	W1
	binary down counter			CNTR output	W2
	(link to INT input)			Timer 1 interrupt	W6
Timer 2	8-bit programmable	Timer 1 underflow	1 to 256	CNTR output	W2
	binary down counter	Prescaler output (ORCLK)		Timer 2 interrupt	W6
		CNTR input			
		System clock			
16-bit timer	16-bit fixed dividing	Instruction clock	65536	Watchdog timer	
	frequency binary down			(The 16th bit is counted twice)	
	counter				

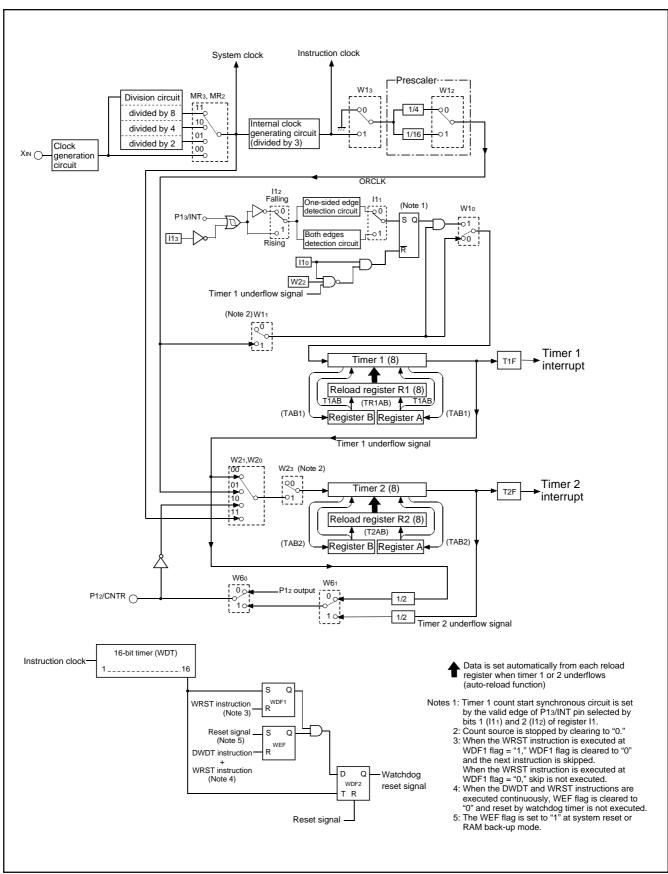


Fig. 22 Timers structure

Table 10 Timer control registers

	Timer control register W1	at reset : 00002		at RAM back-up : 00002	R/W	
W13	Prescaler control bit	0	Stop (state initialize	ed)		
VVIS	W 13 Prescaler control bit		Operating	Operating		
\\//10	W12 Prescaler dividing ratio selection bit		Instruction clock divided by 4			
VV 12			Instruction clock divided by 16			
W11	NAME To a series of the series		Stop (state retained)			
VVII	W11 Timer 1 control bit		Operating			
W ₁₀ Timer 1 count start synchronous circuit		0	Count start synchronous circuit not selected			
VV 10	control bit		Count start synchronous circuit selected			

Timer control register W2		at reset : 00002		reset : 00002	at RAM back-up : state retained	R/W
W23	Timer 2 control bit	()	Stop (state retained)		
VV23	Timer 2 control bit	1		Operating		
W22	Timer 1 count auto-stop circuit selection	0		Count auto-stop circuit not selected		
VV ZZ	bit (Note 2)	^	1	Count auto-stop circuit selected		
		W21 W20		Count source		
W21	W21		0	Timer 1 underflow	signal	
Timer 2 count source selection bits		0	1	Prescaler output (ORCLK)		
		1	0	CNTR input		
			1	System clock		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W
W63	Not used	0	This hit has no fun	This bit has no function, but read/write is enabled.	
	1101 0300	1	This bit has no ran	otion, but read, write is enabled.	
W62	W62 Not used		This bit has no function, but read/write is enabled.		
1 *****					
W61	WG4 ONTD autout as lest's a le't		Timer 1 underflow signal divided by 2 output		
****	W61 CNTR output selection bit		Timer 2 underflow signal divided by 2 output		
W60 P12/CNTR function selection bit		0	P12(I/O)/CNTR input (Note 3)		
******	W60 P12/CNTR function selection bit		P12 (input)/CNTR input/output (Note 3)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronization circuit is selected.
- 3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

(1) Timer control registers

• Timer control register W1

Register W1 controls the count operation of timer 1, the selection of count start synchronous circuit, and the frequency dividing ratio and count operation of prescaler. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W6

Register W6 controls the P12/CNTR pin function and the selection of CNTR output. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. The count source of prescaler is the instruction clock. Use the bit 2 of register W1 to select the prescaler dividing ratio and the bit 3 to start and stop its operation. Prescaler is initialized, and the output signal (ORCLK) stops when the bit 3 of register W1 is cleared to "0."

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Stop counting and then execute the T1AB instruction to set data to timer 1. Data can be written to reload register (R1) with the TR1AB instruction.

When writing data to reload register R1 with the TR1AB instruction, the downcount after the underflow is started from the setting value of reload register R1.

Timer 1 starts counting after the following process;

- ① set data in timer 1, and
- 2 set the bit 1 of register W1 to "1."

However, INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register W1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 2 of register W2 to "1."

When a value set is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

Data can be read from timer 1 with the TAB1 instruction. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Stop counting and then execute the T2AB instruction to set data to timer 2.

Timer 2 starts counting after the following process;

- 1) set data in timer 2,
- ② select the count source with the bits 0 and 1 of register W2, and ③ set the bit 3 of register W2 to "1."

When a value set is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Data can be read from timer 2 with the TAB2 instruction. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer interrupt request flags (T1F, T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2).

Use the interrupt control register V1 to select an interrupt or a skip instruction

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(6) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register W1 to "1." The control by INT pin input can be performed by setting the bit 0 of register I1 to "1."

The count start synchronous circuit is set by level change ("H" \rightarrow "L" or "L" \rightarrow "H") of INT pin input. This valid waveform is selected by bits 1 (I11) and 2 (I12) of register I1 as follows;

- I11 = "0": Synchronized with one-sided edge (falling or rising)
- I11 = "1": Synchronized with both edges (both falling and rising)
 When register I11="0" (synchronized with the one-sided edge), the rising or falling waveform can be selected by the bit 2 of register I1;
- I12 = "0": Falling waveform
- I12 = "1": Rising waveform

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT pin. Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or reset.

However, when the count auto-stop circuit is selected (register W22 = "1"), the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(7) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 2 of register W2 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(8) Timer input/output pin (P12/CNTR pin)

CNTR pin is used to input the timer 2 count source and output the timer 1 and timer 2 underflow signal divided by 2.

The P12/CNTR pin function can be selected by bit 0 of register W6. The CNTR output signal can be selected by bit 1 of register W6. When the CNTR input is selected for timer 2 count source, timer 2 counts the falling waveform of CNTR input.

(9) Precautions

Note the following for the use of timers.

- Prescaler
- Stop the prescaler operation to change its frequency dividing ratio
- · Count source
 - Stop timer 1 or 2 counting to change its count source.
- Reading the count value
 - Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.
- · Writing to the timer
 - Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.
- Writing to reload register R1
 When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

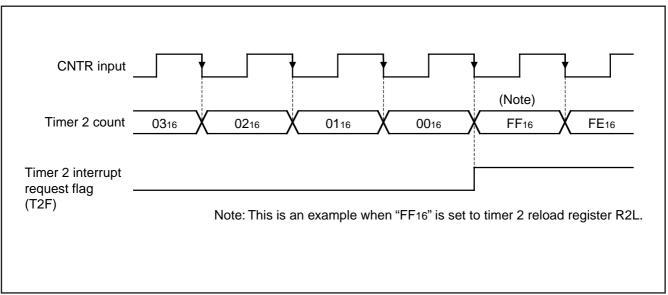


Fig. 23 Count timing diagram at CNTR input

- Timer 1 and timer 2 count start timing and count time when operation starts
 - Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).
 - Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.

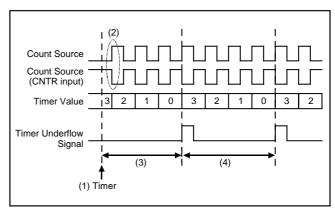


Fig. 24 Timer count start timing and count time when operation starts (T1, T2)

WATCHDOG TIMER

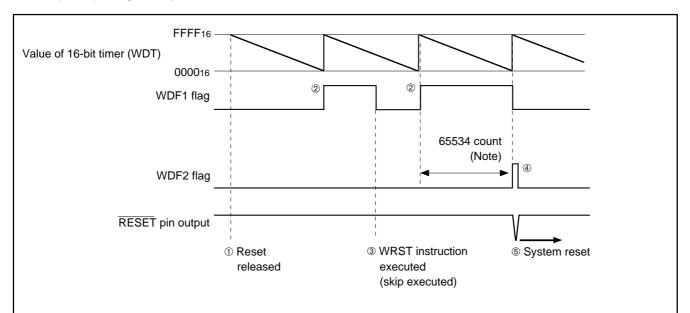
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "FFFF16," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig. 25 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 26). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 27). The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 26 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

↓
Oscillation stop (RAM back-up mode)
```

Fig. 27 Program example to enter the RAM back-up mode when using the watchdog timer

A/D CONVERTER

The 4501 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: ±2LSB
	Differential non-linearity error: ±0.9LSB
Conversion speed	46.5 μ s (High-speed mode at 4.0 MHz oscillation frequency)
Analog input pin	2

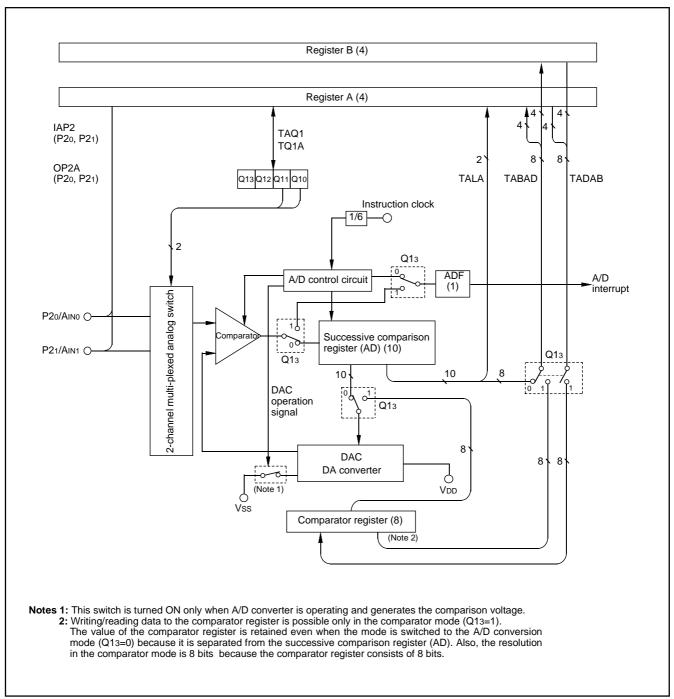


Fig. 28 A/D conversion circuit structure

Table 12 A/D control registers

	A/D control register Q1	at r		reset : 00002	at RAM back-up : state retained R/W	
Q13	A/D operation mode selection bit	С)	A/D conversion mod	de	
Q13	Operation mode selection bit	1		Comparator mode		
Q12	Not used	0		This bit has no function, but read/write is enabled.		
			Q10	Selected pins		
Q11	Analog input pip adjection bits	0	0	AIN0		
Analog input pin selection bits		0	1	AIN1		
Q10		1	0	Not available		
	Q10		1	Not available		

Note: "R" represents read enabled, and "W" represents write enabled.

(1) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(2) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage V_{ref} generated from the built-in DA converter can be obtained with the reference voltage V_{DD} by the following formula:

Logic value of comparison voltage Vref

$$Vref = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(3) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(4) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(5) A/D control register Q1

Register Q1 is used to select the operation mode and one of analog input pins.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- 1 When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- ③ When the comparison result is V_{ref} < V_{IN}, the topmost bit of the register AD remains set to "1." When the comparison result is V_{ref} > V_{IN}, it is cleared to "0."

The 4501 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (46.5 μ s when f(XIN) = 4.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 29).

Comparison voltage (Vref) value At starting conversion Change of successive comparison register AD VDD 1 0 0 0 0 1st comparison 2 VDD VDD *****1 1 0 0 0 0 2nd comparison 2 4 Vdd Vdd Vdd ***1** *2 n 0 0 3rd comparison 2 4 8 A/D conversion result After 10th comparison VDD Vdd *Α completes 2 1024

Table 13 Change of successive comparison register AD during A/D conversion

*2: 2nd comparison result *1: 1st comparison result *3: 3rd comparison result *8: 8th comparison result

*9: 9th comparison result *A: 10th comparison result

(7) A/D conversion timing chart

Figure 29 shows the A/D conversion timing chart.

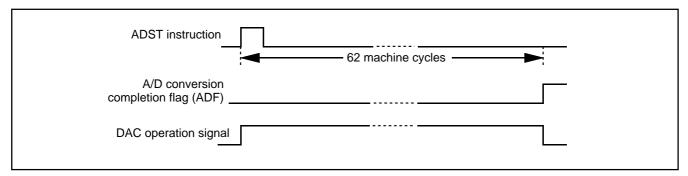


Fig. 29 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P21/AIN1 pin is A/D converted, and the highorder 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

- ① Select the AIN1 pin function and A/D conversion mode with the register Q1 (refer to Figure 30).
- ② Execute the ADST instruction and start A/D conversion.
- 3 Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- 4 Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- ⑤ Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- ® Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- ® Transfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

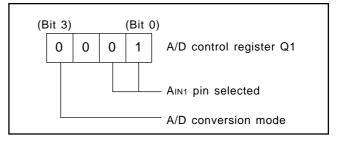


Fig. 30 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage
$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6 μ s at f(XIN) = 4.0 MHz in high-speed mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A/D conversion 1

Note the following when using the analog input pins also for port P2 function:

· Selection of analog input pins

Even when P20/AIN0, P21/AIN1 are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

(14) Notes for the use of A/D conversion 2

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

When the operating mode of A/D converter is changed from the comparator mode to A/D conversion mode with the bit 3 of register Q1, note the following;

- Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode with the bit 3 of register Q1.
- The A/D conversion completion flag (ADF) may be set when the
 operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a
 value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

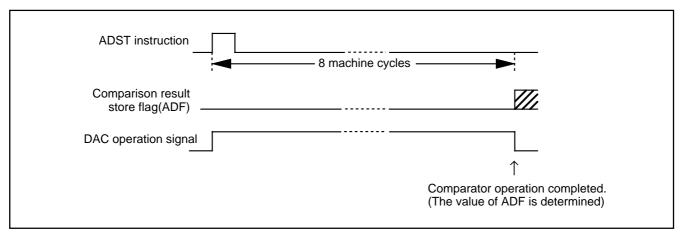


Fig. 31 Comparator operation timing chart

(15) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 32).

· Relative accuracy

① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

· Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

• 1LSB at relative accuracy
$$\rightarrow \frac{VFST-V0T}{1022}$$
 (V)

• 1LSB at absolute accuracy
$$\rightarrow \frac{VDD}{1024}$$
 (V)

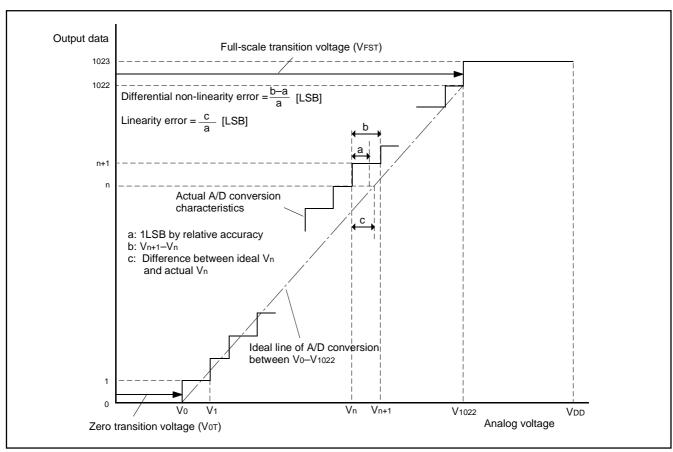


Fig. 32 Definition of A/D conversion accuracy

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

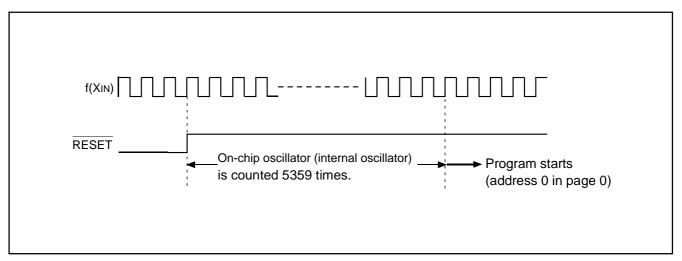


Fig. 33 Reset release timing

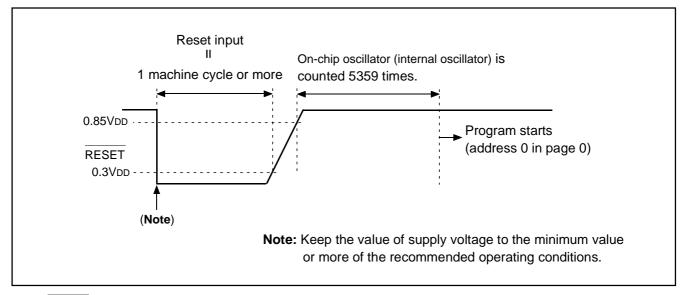


Fig. 34 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to $100 \mu s$ or less. If the rising

time exceeds 100 μ s, connect a capacitor between the <u>RESET</u> pin and Vss at the shortest distance, and input "L" level to <u>RESET</u> pin until the value of supply voltage reaches the minimum operating voltage.



Fig. 35 Structure of reset pin and its peripherals, and power-on reset operation

Table 14 Port state at reset

Name	Function	State
Do, D1	D0, D1	High-impedance (Note 1)
D2/C, D3/K	D2, D3	High-impedance (Notes 1, 2)
P00, P01, P02, P03	P00-P03	High-impedance (Notes 1, 2)
P10, P11, P12/CNTR, P13/INT	P10-P13	High-impedance (Notes 1, 2)
P20/AIN0, P21/AIN1	P20, P21	High-impedance (Notes 1, 2)

Notes 1: Output latch is set to "1."

2: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 36 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 36 are undefined, so set the initial value to them.

Program counter (PC)	
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	
Power down flag (P)	
External 0 interrupt request flag (EXF0)	0
Interrupt control register V1	0 0 0 0 (Interrupt disabled)
Interrupt control register V2	0 0 0 0 (Interrupt disabled)
Interrupt control register I1	0000
Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F)	0
Watchdog timer flags (WDF1, WDF2)	
Watchdog timer enable flag (WEF)	
Timer control register W1	
Timer control register W2	
Timer control register W6	0 0 0 0
Clock control register MR	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	0000
Pull-up control register PU2	0000
A/D conversion completion flag (ADF)	
A/D control register Q1	0 0 0 0
Carry flag (CY)	0
Register A	0 0 0 0
Register B	0000
Register D	x x x x
Register E	X X X X X X X X X X
Register X	
Register Y	0 0 0 0
Register Z	X X
Stack pointer (SP)	1 1 1
Oscillation clock	On-chip oscillator (operating)
Ceramic resonator circuit	Operating
RC oscillation circuit	Stop
	"X" represents undefined.

Fig. 36 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

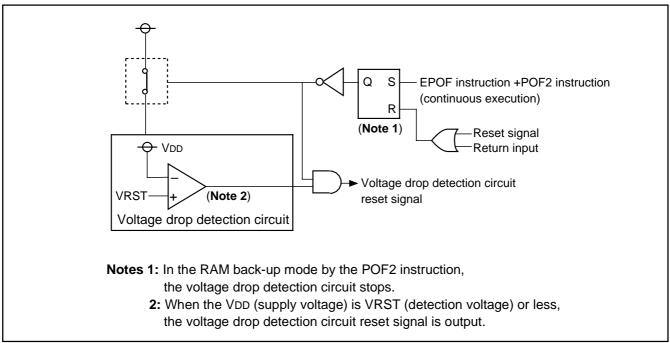


Fig. 37 Voltage drop detection circuit

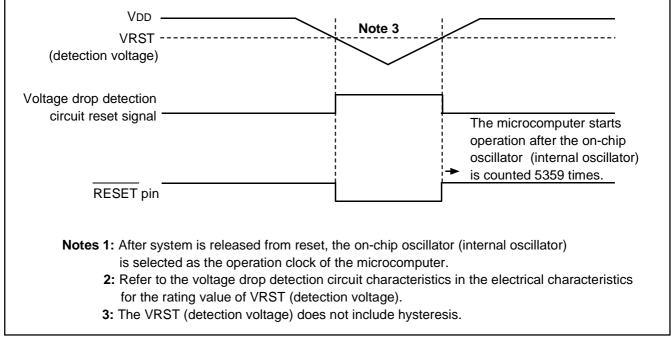


Fig. 38 Voltage drop detection circuit operation waveform example

RAM BACK-UP MODE

The 4501 Group has the RAM back-up mode.

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF or POF2 instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF or POF2 instruction

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

In the RAM back-up mode by the POF instruction, system enters the RAM back-up mode and the voltage drop detection cicuit keeps operating.

In the RAM back-up mode by the POF2 instruction, all internal periperal functions stop.

Table 15 shows the function and states retained at RAM back-up. Figure 39 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF or POF2 instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when:

- reset pulse is input to RESET pin, or
- reset by watchdog timer is performed, or
- voltage drop detection circuit is detected by the voltage drop In this case, the P flag is "0."

Table 15 Functions and states retained at RAM back-up

	RAM b	ack-up
Function	POF	POF2
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	×	×
Contents of RAM	0	0
Port level	(Note 6)	(Note 6)
Selected oscillation circuit	0	0
Timer control register W1	X	X
Timer control registers W2, W6	0	0
Clock control register MR	X	X
Interrupt control registers V1, V2	X	X
Interrupt control register I1	0	0
Timer 1 function	×	×
Timer 2 function	(Note 3)	(Note 3)
A/D conversion function	X	X
Voltage drop detection circuit	O (Note 5)	X
A/D control register Q1	0	0
Pull-up control registers PU0 to PU2	0	0
Key-on wakeup control registers K0 to K2	0	0
External 0 interrupt request flag (EXF0)	X	X
Timer 1 interrupt request flag (T1F)	×	X
Timer 2 interrupt request flag (T2F)	(Note 3)	(Note 3)
Watchdog timer flags (WDF1)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X	X
16-bit timer (WDT)	X (Note 4)	X (Note 4)
A/D conversion completion flag (ADF)	×	×
Interrupt enable flag (INTE)	×	×

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then execute the POF or POF2 instruction.
- 5: This function is operating in the RAM back-up mode. When the voltage drop is detected, system reset occurs.
- 6: As for the D2/C pin, the output latch of port C is set to "1" at the RAM back-up. However, the output latch of port D2 is retained. As for the other ports, their output levels are retained at the RAM back-up.

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 16 shows the return condition for each return source.

(5) Control registers

· Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1
 - Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K2
 Register K2 controls the ports P2, D2/C and D3/K key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

- Pull-up control register PU0
 - Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction.
- Pull-up control register PU1
 - Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction.
- Pull-up control register PU2
 - Register PU2 controls the ON/OFF of the ports P2, D2/C and D3/K pull-up transistor. Set the contents of this register through register A with the TPU2A instruction.
- Interrupt control register I1
 - Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 16 Return source and return condition

	Return source	Return condition	Remarks
	Port P0	Return by an external "L" level in-	The key-on wakeup function can be selected by one port unit. Set the port
signal	Port P1 (Note)	put.	using the key-on wakeup function to "H" level before going into the RAM back-up state.
	Port P2		back-up state.
enb	Ports D2/C, D3/K		
wakeup	Port P13/INT	Return by an external "H" level or	Select the return level ("L" level or "H" level) with the bit 2 of register I1 ac-
External \	(Note)	"L" level input. The return level can be selected with the bit 2	cording to the external state before going into the RAM back-up state.
Exte		(I12) of register I1. When the return level is input, the EXF0 flag is not set.	

Note: When the bit 3 (K13) of register K1 is "0", the key-on wakeup of the INT pin is valid ("H" or "L" level). It is "1", the key-on wakeup of port P13 is valid ("L" level).

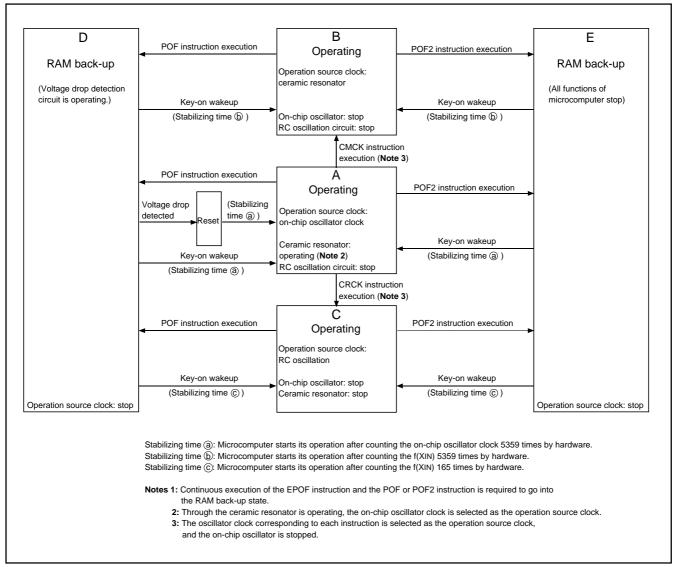


Fig. 39 State transition

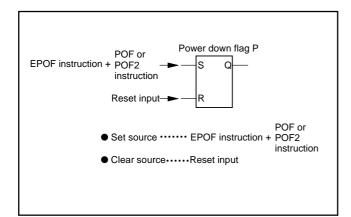


Fig. 40 Set source and clear source of the P flag

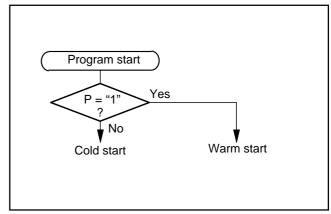


Fig. 41 Start condition identified example using the SNZP instruction

Table 17 Key-on wakeup control register

	Key-on wakeup control register K0		reset: 00002	at RAM back-up : state retained	R/W
K03	Port P03 key-on wakeup	0	Key-on wakeup not	t used	
KU3	control bit	1	Key-on wakeup use	ed	
1/0-	Port P02 key-on wakeup	0	0 Key-on wakeup not used		
K02	02 control bit		Key-on wakeup use	ed	
KO.	Port P01 key-on wakeup	0	0 Key-on wakeup not used		
K01	control bit	1	Key-on wakeup use	ed	
I/Oo	Port P00 key-on wakeup	0	Key-on wakeup not	used	
K0 0	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W
K13	Port P13/INT key-on wakeup	0	P13 key-on wakeup	not used/INT pin key-on wakeup used	
K13	control bit	1 P13 key-on wakeup used/INT pin key-on wakeup not used		used/INT pin key-on wakeup not used	
K12	Port P12/CNTR key-on wakeup	0	Key-on wakeup not used		
K12	control bit	1	Key-on wakeup use	ed	
1/4 /	Port P11 key-on wakeup	0	0 Key-on wakeup not used		
K11	control bit	1	Key-on wakeup used		
K10	Port P10 key-on wakeup	0 Key-on wakeup not used			
K10	control bit	1	Key-on wakeup use	ed	

Key-on wakeup control register K2		at reset : 00002		at RAM back-up : state retained	R/W
I/Os	Port D3/K key-on wakeup	0 Key-on wakeup not		used	
K23	control bit	1 Key-on wakeup use		ed	
K22	Port D2/C key-on wakeup	0 Key-on wakeup not used			
N22	control bit	1 Key-on wakeup use		ed	
K21	Port P21/AIN1 key-on wakeup	0	0 Key-on wakeup not used		
NZ1	control bit	1	1 Key-on wakeup used		
K20	Port P20/AIN0 key-on wakeup	0 Key-on wakeup not used			
N 20	control bit	1	Key-on wakeup use	ed	

Note: "R" represents read enabled, and "W" represents write enabled.

Table 18 Pull-up control register and interrupt control register

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	W
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
P003	control bit	1	Pull-up transistor O	N	
DLIO	Port P02 pull-up transistor	0 Pull-up transistor OFF		FF	
PU02	control bit	1 Pull-up transistor C		N	
DUIG	Port P01 pull-up transistor	0 Pull-up transistor OFF			
PU01	control bit	1 Pull-up transistor ON			
DLIOs	Port P00 pull-up transistor	0 Pull-up transistor OFF			
PU00	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU1	at	reset : 00002	at RAM back-up : state retained	W
DUIA	Port P13/INT pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DUIA	Port P12/CNTR pull-up transistor	0 Pull-up transistor OFF			
PU12	control bit	1 Pull-up transistor C		N	
DUA	Port P11 pull-up transistor	0 Pull-up transistor OFF			
PU11	control bit	1 Pull-up transistor ON			
DUIA	Port P10 pull-up transistor	0	0 Pull-up transistor OFF		
PU10	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU2	at reset : 00002		at RAM back-up : state retained	W
DLIOs	Port D3/K pull-up transistor	0	Pull-up transistor O	FF	
PU23	control bit	1	Pull-up transistor O	N	
DI IO-	Port D2/C pull-up transistor	0 Pull-up transistor OFF		FF	
PU22	control bit	1	Pull-up transistor O	N	
DUO	Port P21/AIN1 pull-up transistor	0 Pull-up transistor OFF			
PU21	control bit	1 Pull-up transistor ON			
DLIO	Port P20/AIN0 pull-up transistor	0	0 Pull-up transistor OFF		
PU20	control bit	1	Pull-up transistor O	N	

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
110	I13 INT pin input control bit (Note 2)		INT pin input disabled		
113			INT pin input enab	led	
		0	Falling waveform ("L" level of INT pin is recognized wi	th the SNZI0
l12	Interrupt valid waveform for INT pin/		instruction)/"L" level		
112	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized with the SNZI0		
			instruction)/"H" lev	el	
114	INT pip odgo dotoction circuit control bit	0	One-sided edge de	etected	
111	In I	1	Both edges detected	ed	
l10	INT pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- · Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 42 shows the structure of the clock control circuit.

The 4501 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the source oscillation (f(XIN)) of the 4501 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.

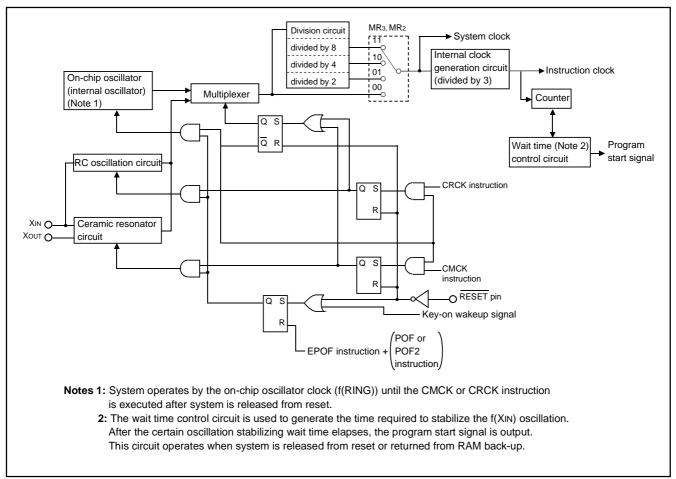


Fig. 42 Clock control circuit structure

(1) Selection of source oscillation (f(XIN))

The ceramic resonator or RC oscillation can be used for the source oscillation of the MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, the MCU operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the source oscillation (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to Vss and leave XOUT pin open (Figure 44).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the source oscillation (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 45).

(4) RC oscillation

When the RC oscillation is used as the source oscillation (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 46).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

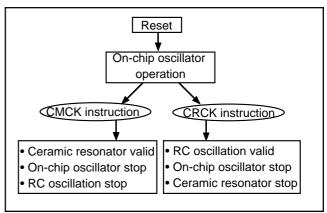


Fig. 43 Switch to ceramic resonance/RC oscillation

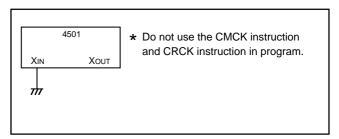


Fig. 44 Handling of XIN and XOUT when operating on-chip oscillator

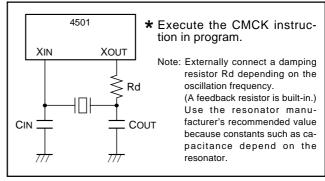


Fig. 45 Ceramic resonator external circuit

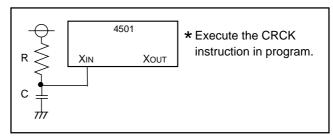


Fig. 46 External RC oscillation circuit

(5) External clock

When the external signal clock is used as the source oscillation (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 47).

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the RAM back-up mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

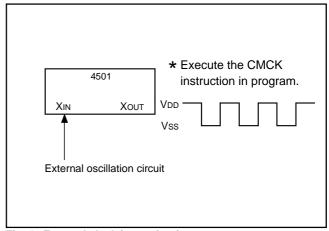


Fig. 47 External clock input circuit

Table 19 Clock control register MR

Clock control register MR		at reset : 11002		reset : 11002	at RAM back-up : 11002	R/W
			MR2	System clock		
MR3	MR3 System clock selection bits MR2	0	0	f(XIN) (high-speed n	node)	
		0	1	f(XIN)/2 (middle-speed mode)		
MR ₂		1	0	f(XIN)/4 (low-speed	mode)	
		1	1	f(XIN)/8 (default mo	de)	
MR1	Not your	()			
IVIET	Not used	1 Th		This bit has no function, but read/write is enabled.		
MR ₀	Not used	0				
IVIAU	Not used	1		This bit has no function, but read/write is enabled.		

Note: "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (1) Mask ROM Order Confirmation Form 1
- (2) Data to be written into mask ROM EPROM (three sets containing the identical data)
- (3) Mark Specification Form 1

*For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up:

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- · use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

6 Timer count source

Stop timer 1 or 2 counting to change its count source.

Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

® Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.

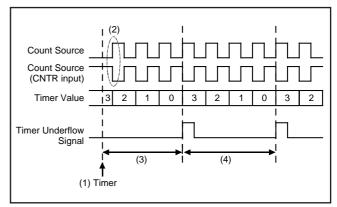


Fig. 48 Timer count start timing and count time when operation starts (T1, T2)

¹ Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

12 Multifunction

- The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20 and P21 can be used even when AIN0 and AIN1 are selected.

[®] Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state. Note that system cannot enter the RAM back-up state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

P13/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 49①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 492).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 49[®]).

```
LA
            ; (XXX02)
TV1A
            ; The SNZ0 instruction is valid ..... \ensuremath{ \mbox{\scriptsize 1}}
LA
            ; (1XXX2)
TI1A
            ; Control of INT pin input is changed
NOP
            SNZ0
            ; The SNZ0 instruction is executed
            (EXF0 flag cleared)
NOP
            X: these bits are not used here.
```

Fig. 49 External 0 interrupt program example-1

Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 50①).

Fig. 50 External 0 interrupt program example-2

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 51⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 51@).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 51®).

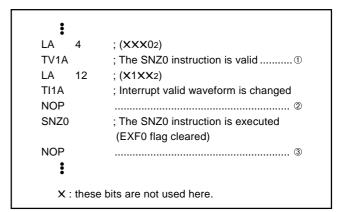


Fig. 51 External 0 interrupt program example-3

(6) Notes for the use of A/D conversion 1

Note the following when using the analog input pins also for port P2 function:

· Selection of analog input pins

Even when P20/AIN0 and P21/AIN1 are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

· TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

Notes for the use of A/D conversion 2

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

When the operating mode of A/D converter is changed from the comparator mode to A/D conversion mode with the bit 3 of register Q1, note the following;

- Clear the bit 2 of register V2 to "0" (refer to Figure 52[®]) to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode with the bit 3 of register Q1.
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

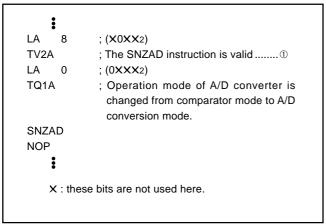


Fig. 52 A/D conversion interrupt program example

® Notes for the use of A/D conversion 3

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μF to 1 μF) to analog input pins (Figure 53). When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 54. In addition, test the application products sufficiently.

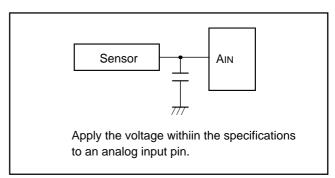


Fig. 53 Analog input external circuit example-1

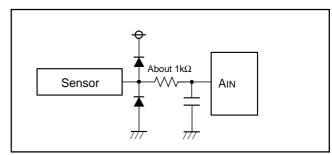


Fig. 54 Analog input external circuit example-2

® Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

© Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in addres 0 in page 0 is recommended).

The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the on-chip oscillator stop.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (POF and POF2 instructions) cannot be used.

Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

Mote on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

Interrupt control register V1		at reset : 00002		at RAM back-up : 00002	R/W	
V13	Timer 2 interrupt enable bit	0	Interrupt disabled ((SNZT2 instruction is valid)		
V 13	V 13 Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid) (Note 2	2)	
V/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)			
V 12		1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2)			
V11	Not used	0	This hit has no fun	ction, but read/write is enabled.		
V 11	Not used	1	This bit has no function, but read/write is enabled.			
V/4 o	External O interrupt anable hit	0	Interrupt disabled (SNZ0 instruction is valid)			
V10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)		

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W	
\/Oo	V23 Not used					
V23	V23 Not used	1	This bit has no function, but read/write is enabled.			
V22	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)			
V Z2	A/D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid) (Note 2)			
V21	Not used	0	This bit has no function, but read/write is enabled.			
V Z 1	Not used	1				
\/O ₀	V2n Not used	0	This bit has no function, but read/write is enabled.			
V20	Not used	1				

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
l13	INT pin input control bit (Note 3)	0	INT pin input disab	bled	
113	in pin input control bit (Note 3)	1	INT pin input enab	led	
		0	Falling waveform ("L" level of INT pin is recognized wi	th the SNZI0
112	Interrupt valid waveform for INT pin/	0	instruction)/"L" level		
112	return level selection bit (Note 3)	1	Rising waveform ("H" level of INT pin is recognized wi	th the SNZI0
		'	instruction)/"H" lev	el	
l1 ₁	INT pin adda detection circuit control bit	0	One-sided edge detected		
111	In In In edge detection circuit control bit		Both edges detected		
110	INT pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		

	Clock control register MR		at	reset : 11002	at RAM back-up : 11002 R/W	٧
		MRз	MR2	'	System clock	
MR3	MR3	0	0	f(XIN) (high-speed n	node)	
	System clock selection bits	0	1	f(XIN)/2 (middle-speed mode)		
MR ₂		1	0	f(XIN)/4 (low-speed	mode)	
		1	1	f(XIN)/8 (default mod	de)	
MR1	Not your	()			
IVITAT	Not used	1		This bit has no function, but read/write is enabled.		
MR ₀	Not used	0				
IVIRO	Not used	1		This bit has no function, but read/write is enabled.		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} These instructions are equivalent to the NOP instruction.

^{3:} When the contents of 112 and 113 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

Timer control register W1		at reset : 00002		at RAM back-up : 00002	R/W	
\\\/12	W13 Prescaler control bit	0	Stop (state initialize	ed)		
VVIS		1	Operating			
W12	W12 Prescaler dividing ratio selection bit	0	Instruction clock di	Instruction clock divided by 4		
VV 12	Frescaler dividing fallo selection bit	1	Instruction clock divided by 16			
W11	Timer 1 control bit	0	Stop (state retained	Stop (state retained)		
VVII	Timer i control bit	1	Operating	Operating		
W/10	W ₁₀ Timer 1 count start synchronous circuit control bit	0	Count start synchronous circuit not selected			
VV 10		1	Count start synchronous circuit selected			

	Timer control register W2		at reset : 00002		at RAM back-up : state retained	R/W
W23	Timer 2 control bit	()	Stop (state retained	d)	
VV23	Timer 2 control bit	1	1	Operating		
W22	Timer 1 count auto-stop circuit selection	()	Count auto-stop circuit not selected		
****	bit (Note 2)	1	1	Count auto-stop circuit selected		
1440		W21	W20		Count source	
W21		0	0	Timer 1 underflow signal		
	Timer 2 count source selection bits	0	1	Prescaler output (C	Prescaler output (ORCLK)	
W20			0	CNTR input		
		1	1	System clock		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W	
W63	Not used	0	This hit has no fun	This bit has no function, but read/write is enabled.		
1100	1100 0000	1	THIS SIC HAS HO TUIT	otion, but read, write is enabled.		
W62	W62 Not used	0	This bit has no function, but read/write is enabled.			
VV02		1	This bit has no function, but read/write is enabled.			
W61	CNTR output selection bit	0	Timer 1 underflow signal divided by 2 output			
VVOI	CNTR output selection bit	1	Timer 2 underflow signal divided by 2 output			
W60	P12/CNTR function selection bit	0	P12(I/O)/CNTR input (Note 3)			
VV00	VV60 P12/CNTR function selection bit		P12 (input)/CNTR input/output (Note 3)			

A/D control register Q1		at re		reset : 00002	at RAM back-up : state retained R/W	
Q13	A/D operation mode selection bit	(0 A/D conversion mode			
Q13	A/D operation mode selection bit	1	1	Comparator mode		
Q12	Not used	1) I	This bit has no function, but read/write is enabled.		
		Q11	Q10		Selected pins	
Q11	Analog input pip colection bits	0	0	AIN0		
	Analog input pin selection bits	0	1	AIN1		
Q10		1	0	Not available		
Q 10		1	1	Not available		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the timer 1 count start synchronization circuit is selected.
3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W	
K03	Port P03 key-on wakeup	0	Key-on wakeup not	used		
K03	control bit	1	Key-on wakeup use	ed		
K02	Port P02 key-on wakeup	0	Key-on wakeup not	used		
K02	control bit	1	Key-on wakeup use	ed		
K01	Port P01 key-on wakeup	0	Key-on wakeup not	ot used		
KU1	control bit	1 Key-on wakeup use		ed		
K00	Port P00 key-on wakeup	0 Key-on wakeup not		used		
K00	control bit	1	Key-on wakeup use	ed		

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W
K13	Port P13/INT key-on wakeup	0	P13 key-on wakeup	not used/INT pin key-on wakeup used	
K 13	control bit	1	P13 key-on wakeup	used/INT pin key-on wakeup not used	
K12	Port P12/CNTR key-on wakeup	0	Key-on wakeup not	t used	
K 12	control bit	1	Key-on wakeup use	ed	
1/4	Port P11 key-on wakeup	0	Key-on wakeup not	used	
K11	control bit	1 Key-on wakeup used		ed	
K10	Port P10 key-on wakeup	0 Key-on wakeup not i		used	
K10	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W	
K23	Port D ₃ /K key-on wakeup	0	Key-on wakeup not	used		
N23	control bit	1	Key-on wakeup use	ed		
K22	Port D2/C key-on wakeup	0 Key-on wakeup not		t used		
N22	control bit	1	Key-on wakeup use	ed		
K21	Port P21/AIN1 key-on wakeup	0	Key-on wakeup not	used		
NZ1	control bit	1 Key-on wakeup use		ed		
K20	Port P20/AIN0 key-on wakeup	0 Key-on wakeup not		used		
K20	control bit	1	Key-on wakeup use	ed		

Note: "R" represents read enabled, and "W" represents write enabled.

	Pull-up control register PU0		reset : 00002	at RAM back-up : state retained	W
DUIOs	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DUIDo	Port P02 pull-up transistor	0 Pull-up transistor O)FF	
PU02	control bit	1	Pull-up transistor O	N	
DUO	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1	Pull-up transistor O	N	
DLIOs	Port P00 pull-up transistor	0 Pull-up transistor O		FF	
PU00	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU1	at reset : 00002		at RAM back-up : state retained	W		
DUIA	Port P13/INT pull-up transistor	0 Pull-up transistor OFF					
PU13	control bit	1	Pull-up transistor ON				
DUIA	Port P12/CNTR pull-up transistor	0	Pull-up transistor OFF				
PU12	control bit	1	Pull-up transistor ON				
PU11	Port P11 pull-up transistor	0	Pull-up transistor O	FF			
PUII	control bit	1	Pull-up transistor ON				
DUIA	Port P10 pull-up transistor	0	Pull-up transistor OFF				
PU10	control bit	1	Pull-up transistor O	N			

Pull-up control register PU2		at reset : 00002		at RAM back-up : state retained W			
PU23	Port D ₃ /K pull-up transistor	0 Pull-up transistor OFF					
PU23	control bit	1	Pull-up transistor ON				
DLIOs	Port D2/C pull-up transistor	0	Pull-up transistor OFF				
PU22	control bit	1	Pull-up transistor ON				
DI IO	Port P21/AIN1 pull-up transistor	0	Pull-up transistor O	FF			
PU21	control bit	1	Pull-up transistor ON				
DLIO	Port P20/AIN0 pull-up transistor	0	Pull-up transistor OFF				
PU20	control bit	1	Pull-up transistor O	N			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

The 4501 Group has the 111 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	WDF1	Watchdog timer flag
В	Register B (4 bits)	WEF	Watchdog timer enable flag
DR	Register D (3 bits)	INTE	Interrupt enable flag
E	Register E (8 bits)	EXF0	External 0 interrupt request flag
Q1	A/D control register Q1 (4 bits)	Р	Power down flag
V1	Interrupt control register V1 (4 bits)	ADF	A/D conversion completion flag
V2	Interrupt control register V2 (4 bits)		
l1	Interrupt control register I1 (4 bits)	D	Port D (4 bits)
W1	Timer control register W1 (4 bits)	P0	Port P0 (4 bits)
W2	Timer control register W2 (4 bits)	P1	Port P1 (4 bits)
W6	Timer control register W6 (4 bits)	P2	Port P2 (2 bits)
MR	Clock control register MR (4 bits)	С	Port C (1 bit)
K0	Key-on wakeup control register K0 (4 bits)	K	Port K (1 bit)
K1	Key-on wakeup control register K1 (4 bits)		
K2	Key-on wakeup control register K2 (4 bits)	х	Hexadecimal variable
PU0	Pull-up control register PU0 (4 bits)	у	Hexadecimal variable
PU1	Pull-up control register PU1 (4 bits)	z	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	р	Hexadecimal variable
X	Register X (4 bits)	n	Hexadecimal constant
Υ	Register Y (4 bits)	i	Hexadecimal constant
Z	Register Z (2 bits)	j	Hexadecimal constant
DP	Data pointer (10 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
	(It consists of registers X, Y, and Z)		(same for others)
PC	Program counter (14 bits)		
РСн	High-order 7 bits of program counter	\leftarrow	Direction of data movement
PCL	Low-order 7 bits of program counter	\leftrightarrow	Data exchange between a register and memory
SK	Stack register (14 bits X 8)	?	Decision of state shown before "?"
SP	Stack pointer (3 bits)	()	Contents of registers and memories
CY	Carry flag	_	Negate, Flag unchanged after executing instruction
R1	Timer 1 reload register	M(DP)	RAM address pointed by the data pointer
R2	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T1	Timer 1	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p5 p4 p3 p2 p1 p0
T1F	Timer 1 interrupt request flag	С	Hex. C + Hex. number x (also same for others)
T2F	Timer 2 interrupt request flag	+	
		x	
		1	

Note: Some instructions of the 4501 Group has the skip function to unexecute the next described instruction. The 4501 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

	NDEX LIST OF INSTRUCTION FUNCTION								
Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page		
	ТАВ	$(A) \leftarrow (B)$ $(B) \leftarrow (A)$	77, 90 83, 90	RAM to register transfer	XAMI j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$	89, 90		
	TAY	$(A) \leftarrow (Y)$	83, 90	egister	TMA j	$(M(DP)) \leftarrow (A)$	85, 90		
	TYA	(Y) ← (A)	88, 90	SAM to r		$(X) \leftarrow (X) EXOR(j)$ $j = 0 \text{ to } 15$	00, 00		
ısfer	TEAB	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$	84, 90		LA n	(A) ← n	68, 92		
Register to register transfer	TABE	(B) ← (E7–E4) (A) ← (E3–E0)	78, 90		ТАВР р	n = 0 to 15 $(SP) \leftarrow (SP) + 1$	78, 92		
ster to re	TDA	(DR2−DR0) ← (A2−A0)	84, 90			$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$			
Regis	TAD	$(A2-A0) \leftarrow (DR2-DR0)$ $(A3) \leftarrow 0$	79, 90			(B) \leftarrow (ROM(PC))7-4 (A) \leftarrow (ROM(PC))3-0			
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$	83, 90			$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$			
	TAX	$(A) \leftarrow (X)$	83, 90		AMC	$(A) \leftarrow (A) + (M(DP))$	62, 92 62, 92		
	TASP	$(A2-A0) \leftarrow (SP2-SP0)$ $(A3) \leftarrow 0$	81, 90		AIVIC	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$			
	LXY x, y	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$	68, 90	Arithmetic operation	A n	(A) \leftarrow (A) + n n = 0 to 15	62, 92		
RAM addresses	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	68, 90	ithmetic	AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$	63, 92		
RAM adı	INY	(Y) ← (Y) + 1	68, 90	Ar	OR	$(A) \leftarrow (A) \text{ OR } (M(DP))$	70, 92		
	DEY	$(Y) \leftarrow (Y) - 1$	65, 90		SC RC	$(CY) \leftarrow 1$ $(CY) \leftarrow 0$	73, 92 71, 92		
	ТАМ ј	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$	80, 90		SZC	(CY) = 0 ?	76, 92		
ansfer	XAM j	$j = 0 \text{ to } 15$ $(A) \leftarrow \rightarrow (M(DP))$	89, 90		СМА	$(A) \leftarrow (\overline{A})$	65, 92		
RAM to register transfer	AAWI J	$(X) \leftarrow \rightarrow (W(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$	03, 30		RAR	→CY→A3A2A1A0	71, 92		
RAM to	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) - 1$	89, 90						

Note: p is 0 to 15 for M34501M2, p is 0 to 31 for M34501M4/E4.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	SB j	(Mj(DP)) ← 1	73, 92		DI	(INTE) ← 0	66, 96
C.		j = 0 to 3			EI	 (INTE) ← 1	66, 96
eratic	RB j	$(Mj(DP)) \leftarrow 0$	71, 92				
Bit operation		j = 0 to 3			SNZ0	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0	74, 96
ā	SZB j	(Mj(DP)) = 0 ?	76, 92			V10 = 1: SNZ0 = NOP	
		j = 0 to 3			SNZI0	I12 = 1 : (INT) = "H" ?	75, 96
<u> </u>	SEAM	(A) = (M(DP))?	74, 92	ation	SINZIU		75, 96
Comparison operation			74.00	nterrupt operation	TAN / 4	(4)	
Somp	SEA n	(A) = n? n = 0 to 15	74, 92	rupt	TAV1	(A) ← (V1)	81, 96
				Inter	TV1A	(V1) ← (A)	87, 96
	Ва	(PCL) ← a6–a0	63, 94		TAV2	(A) ← (V2)	82, 96
eratio	BL p, a	(PCH) ← p (Note)	63, 94			(*,* (*2)	02, 00
edo ι		(PCL) ← a6-a0			TV2A	(V2) ← (A)	87, 96
Branch operation	BLA p	(PCH) ← p (Note)	63, 94		TAI1	(A) ← (I1)	79, 96
В		$(PCL) \leftarrow (DR2-DR0, A3-A0)$			T14.A	(14) . (A)	04.00
	BM a	(SP) ← (SP) + 1	64, 94		TI1A	(I1) ← (A)	84, 96
		$(SK(SP)) \leftarrow (PC)$			TAW1	(A) ← (W1)	82, 96
		(PCH) ← 2 (PCL) ← a6–a0			TW1A	$(W1) \leftarrow (A)$	87, 96
ion							
Subroutine operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	64, 94		TAW2	(A) ← (W2)	82, 96
ine o		$(PCH) \leftarrow p (Note)$			TW2A	(W2) ← (A)	88, 96
orouti		(PCL) ← a6–a0			TAW6	(A) ← (W6)	82, 96
Suk	BMLA p	(SP) ← (SP) + 1	64, 94		IAWO	(A) (WO)	02, 30
		$(SK(SP)) \leftarrow (PC)$		ے	TW6A	(W6) ← (A)	88, 96
		(PCH) ← p (Note) (PCL) ← $(DR2-DR0, A3-A0)$		ratio	TAB1	(B) ← (T17–T14)	77, 96
		(20)	70.04	Timer operation		(A) ← (T13–T10)	
	RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	72, 94	Time	T1AB	(R17–R14) ← (B)	77, 96
						(T17−T14) ← (B)	
	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	72, 94			$(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$	
tion							
Return operation	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	72, 94		TAB2	$(B) \leftarrow (T27-T24)$ $(A) \leftarrow (T23-T20)$	78, 96
nrn c		(OI) ← (OI) = I				(123 120)	
Ret					T2AB	$(R27-R24) \leftarrow (B)$	77, 96
						$(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$	
						(T23–T20) ← (A)	

Note: p is 0 to 15 for M34501M2, p is 0 to 31 for M34501M4/E4. INDEX LIST OF INSTRUCTION FUNCTION (continued)

TR1AB	(R17–R14) ← (B)	0= 00				
	$(R13-R10) \leftarrow (A)$	87, 96		IAK	$ (A0) \leftarrow (K) $ $ (A3-A1) \leftarrow 0 $	67, 98
SNZT1	V12 = 0: (T1F) = 1 ? After skinning (T1F) ← 0	75, 96		ОКА	(K) ← (A0)	69, 98
	V12 = 1: SNZT1 = NOP			TK0A	(K0) ← (A)	84, 98
SNZT2	V13 = 0: (T2F) = 1 ? After skipping, (T2F) \leftarrow 0	76, 96	ion	TAK0	(A) ← (K0)	79, 98
	V13 = 1: SNZT2 = NOP		operat	TK1A	(K1) ← (A)	85, 98
IAP0	(A) ← (P0)	67, 98	Output	TAK1	(A) ← (K1)	80, 98
ОР0А	(P0) ← (A)	69, 98	Input/	TK2A	(K2) ← (A)	85, 98
IAP1	(A) ← (P1)	67, 98		TAK2	(A) ← (K2)	80, 98
OP1A	(P1) ← (A)	69, 98		TPU0A	(PU0) ← (A)	86, 98
IAP2	$(A_1, A_0) \leftarrow (P_{21}, P_{20})$ $(A_3, A_2) \leftarrow 0$	67, 98		TPU1A	(PU1) ← (A)	86, 98
OP2A	(P21, P20) ← (A1, A0)	70, 98				86, 98
CLD	(D) ← 1	64, 98		IABAD	(B) ← (AD9–AD6)	78, 100
RD	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 3$	72, 98			In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)	
SD	$(D(Y)) \leftarrow 1$ (Y) = 0 to 3	73, 98		TALA	$(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$	80, 100
SZD	(D(Y)) = 0? (Y) = 0 to 3	76, 98	tion	TADAB	(AD7–AD4) ← (B)	79, 100
SCP	(C) ← 1	73, 98	opera	TA 04		04 400
RCP	$(C) \leftarrow 0$	71, 98	version			81, 100
SNZCP	(C) = 1 ?	75, 98	/D con			86, 100
			₹	ADST	Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting	62, 100
				SNZAD	V22 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0 V22 = 1: SNZAD = NOP	74, 100
	SNZT2 IAP0 OP0A IAP1 OP1A IAP2 OP2A CLD RD SD SZD SCP RCP	After skipping, $(T1F) \leftarrow 0$ V12 = 1: SNZT1 = NOP SNZT2	After skipping, (T1F) ← 0 V12 = 1: SNZT1 = NOP SNZT2 V13 = 0: (T2F) = 1? After skipping, (T2F) ← 0 V13 = 1: SNZT2 = NOP IAPO (A) ← (P0) $(A) \leftarrow (P0)$ $(A) \leftarrow (P1)$ $(A) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$ $(A3, A2) \leftarrow 0$ OP2A $(A1, A0) \leftarrow (A1, A0)$ $(A1, A0) \leftarrow (A$	After skipping, $(T1F) \leftarrow 0$ $V12 = 1$: SNZT1 = NOP SNZT2 $V13 = 0$: $(T2F) = 1$? After skipping, $(T2F) \leftarrow 0$ $V13 = 1$: SNZT2 = NOP IAPO $(A) \leftarrow (P0)$ $OP0A$ $(P0) \leftarrow (A)$ $OP0A$ $(P1) \leftarrow (A)$ $OP1A$	After skipping, $(T1F) \leftarrow 0$ $V12 = 1: SNZT1 = NOP$ SNZT2 $V13 = 0: (T2F) = 1?$ After skipping, $(T2F) \leftarrow 0$ $V13 = 1: SNZT2 = NOP$ IAPO $(A) \leftarrow (P0)$ $OP0A$ $(P0) \leftarrow (A)$ $IAP1$ $(A) \leftarrow (P1)$ $OP1A$ $IAP2$ $(A1, A0) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$ $OP2A$	After skipping, (T1F) \leftarrow 0 V12 = 1: SNZT1 = NOP SNZT2 V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP IAPO (A) \leftarrow (P0) 67, 98 OP0A (F0) \leftarrow (A) 69, 98 IAP1 (A) \leftarrow (P1) 67, 98 OP1A (P1) \leftarrow (A) 69, 98 IAP2 (A1, A0) \leftarrow (P21, P20) (A3, A2) \leftarrow 0 OP2A (P21, P20) \leftarrow (A1, A0) 70, 98 CLD (D) \leftarrow 1 64, 98 RD (D(Y)) \leftarrow 0 (Y) \leftarrow 0 to 3 SD (D(Y)) \leftarrow 1 73, 98 RY) = 0 to 3 SZD (D(Y)) = 0? (Y) = 0 to 3 SZD (C) \leftarrow (C) \leftarrow 0 71, 98 RCP (C) \leftarrow 0 71, 98 SNZCP (C) \leftarrow 1 73, 98 RCP (C) \leftarrow 0 71, 98 SNZCP (C) = 1? After skipping, (T1F) \leftarrow 0 76, 98 ITAK0 (K0) \leftarrow (A) TAK0 (K0) \leftarrow (A) TAK0 (K0) \leftarrow (A) TAK1 (A) \leftarrow (K1) TAK1 (A) \leftarrow (K1) TAK1 (A) \leftarrow (K1) TAK2 (A) \leftarrow (K2) TPU0A (PU0) \leftarrow (A) TPU1A (PU1) \leftarrow (A) TPU2A (PU2) \leftarrow (A) TABAD In AD conversion mode (Q13 = 0), (B) \leftarrow (AD5-AD6) (A) \leftarrow (AD5-AD6) (AD6-AD6) (AD6-AD6) (AD6-AD6) (AD6-AD6) (AD6-AD6-AD6) (AD6-AD6-AD6) (AD6-AD6-AD6) (AD6-AD6-AD6-AD6-AD6-AD6-AD6-AD6-AD6-AD6-

INDEX LIST OF INSTRUCTION FUNCTION (continued)

	Croup.						
Group- ing	Mnemonic	Function	Page				
	NOP	(PC) ← (PC) + 1	69, 100				
	POF	RAM back-up (Voltage drop detection circuit valid)	70, 100				
	POF2	RAM back-up	70, 100				
	EPOF	POF, POF2 instructions valid	66, 100				
	SNZP	(P) = 1 ?	75, 100				
Other operation	DWDT	Stop of watchdog timer function enabled	66, 100				
Other	WRST	(WDF1) = 1 ? After skipping, (WDF1) ← 0	88, 100				
	СМСК	Ceramic resonance circuit selected	65, 100				
	CRCK	RC oscillation circuit selected	65, 100				
	TAMR	(A) ← (MR)	81, 100				
	TMRA	$(MR) \leftarrow (A)$	85, 100				

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

Δ n (Δdd n	and accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag 01	OKIP CONTRIBUTI
oouo	0 0 0 1 1 0 n n n n ₂ 0 6 n ₁₆	1	1	_	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	operation	
Ореганоп.	n = 0 to 15		register A, The conter changed. Skips the register as overflow as Executes t	value n in and stores of carr next instrustines the resulte next instructions.	the immediate field to s a result in register A. y flag CY remains unction when there is no t of operation. Struction when there is t of operation.
ADST (A/D	conversion STart)				
Instruction code	D9 D0 1 0 1 1 1 1 1 2 9 F 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(ADF) \leftarrow 0$	Grouping:	A/D conve	rsion opera	ation
	Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting (Q13: bit 3 of A/D control register Q1)	Description: Clears (0) to A/D conversion compl flag ADF, and the A/D conversion at the conversion mode (Q13 = 0) or the comparator mode = 1) is started.			
AM (Add a	ccumulator and Memory)	1			
Instruction code	D9 D0 0 0 0 0 1 0 1 0 0 0 A	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic	operation	
		Description	Stores the	result in re	f M(DP) to register A. egister A. The contents ins unchanged.
AMC (Add	accumulator, Memory and Carry)				
Instruction	D9 D0 0 0 0 0 0 1 0 1 1 0 0 B	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 1 0 1 1 2 0 0 16	1	1	0/1	-
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	Grouping: Description		contents of ster A. Stor	f M(DP) and carry flag es the result in register

AND (logic	al AND between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0 2 0 1 8 16	words 1	cycles 1	_	_
Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping:	Arithmetic	operation	
operation.	$(A) \leftarrow (A) \text{ AND } (\text{IM}(DF))$	Description			ation between the cor
		,,,,	tents of r	egister A	and the contents e result in register A.
B a (Branc	n to address a)				
Instruction code	D9 D0 0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	(PCL) ← a6 to a0	Grouping:	Branch ope	eration	
		Description	: Branch wit	hin a page	: Branches to addres
		Note:	a in the ide Specify the including th	e branch a	ddress within the pag
BL p, a (Br Instruction code	anch Long to address a in page p) D9 D0 D0 0 0 1 1 1 1 p4 p3 p2 p1 p0 2 0 E p p 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 26 25 24 22 22 22 22 2	2	2	_	_
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Grouping:	Branch ope		
Operation:	$(PCH) \leftarrow p$	Description			: Branches to addres
	(PCL) ← a6 to a0	Note:	a in page p p is 0 to 15 for M3450	5 for M345	01M2, and p is 0 to 3
BLA p (Bra	anch Long to address (D) + (A) in page p)				
Instruction code	D9 D0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p 16	2	2	_	-
		Grouping:	Branch ope		
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Description		DR ₀ A ₃ A	: Branches to addres 2 A1 A0)2 specified b
		Note:	J	5 for M345	601M2 and p is 0 to 3

	nch and Mark to address a in page 2)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a a	words	cycles				
	10	1	1	_	_		
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	call opera	tion		
	$(SK(SP)) \leftarrow (PC)$	Description	: Call the su	broutine in	page 2 : Calls the sub		
	(PCH) ← 2		routine at a	address a i	n page 2.		
	(PCL) ← a6–a0	Note:		-	from page 2 to anothe		
					led with the BM instruc		
			tion when i				
					r the stack because the		
			maximum	level of Sur	oroutine nesting is 8.		
BML p, a (Branch and Mark Long to address a in page p)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p	words	cycles				
		2	2	_	_		
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a ₁₆	One combine ma	Cook navetice a		#: a -a		
	(CD) - (CD) - 4	Grouping: Description	Subroutine		Calls the subroutine a		
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	Description			Calls the subfoutifie a		
	$(SK(SF)) \leftarrow (FC)$ $(PCH) \leftarrow p$	Note:	address a in page p. p is 0 to 15 for M34501M2 and p is 0 to 31				
	(PCL) ← a6–a0		for M34501M4/E4.				
	(1.02) 1.00		Be careful not to over the stack because the				
			maximum	level of sul	proutine nesting is 8.		
BMLA p (E	Branch and Mark Long to address (D) + (A) in page p)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 1 1 0 0 0 0 0 0 3 0	words	cycles		·		
		2	2	_	_		
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p p						
		Grouping:	Subroutine				
Operation:	(SP) ← (SP) + 1	Description			Calls the subroutine a		
	$(SK(SP)) \leftarrow (PC)$				Ro A3 A2 A1 A0)2 speci-		
	$(PCH) \leftarrow p$	Notes			nd A in page p. 501M2 and p is 0 to 31		
	$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$	Note:	for M3450		outiviz and p is 0 to 3		
					r the stack because the		
					proutine nesting is 8.		
CLD (CLea	ar port D)				-		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 1 0 0 0 1 .	words	cycles				
	0 0 0 0 1 0 0 1 16	1	1	_	_		
Operation:	(D) ← 1	Crauning	Innut/Outn	ut aparatia	<u> </u>		
Operation.		Grouping: Input/Output operation Description: Sets (1) to port D.					
		200011011	. 5515 (1) 10	PO. (D.			
		I .					

CMA (Colv	Iplement of Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C	words	cycles		
		1	1	_	-
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
		Description		•	plement for register A's
			contents in	register A	
CMCK (Cld	ock select: ceraMic resonance ClocK)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 0 ₂ 2 9 A ₁₆	words 1	cycles 1	_	
			'		
Operation:	Ceramic resonance circuit selected	Grouping:	Other oper		
		Description	: Selects the stops the c		resonance circuit and cillator.
CRCK (Clo	Dock select: Rc resonance ClocK) D9 D0 1 0 1 0 0 1 1 0 0 1 1 2 2 9 B 16	Number of words	Number of cycles	Flag CY	Skip condition
	10	1	1	_	-
Operation:	RC resonance circuit selected	Grouping:	Other oper		
		Description: Selects the RC resonance circuit and stops			
DEV (DEc	rement register Y)		the on-chip	o oscillator	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	1.129 0.1	Grap containen
	16	1	1	_	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$	Grouping: Description	As a result of register skipped. W	1 from the of subtractory is 15, the of the color of the	contents of register Y. tion, when the contents the next instruction is contents of register Y is action is executed.

DI (Disable	Interrupt)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 0 1 0 0 1 0 0 2	1	1	_	-
Operation:	(INTE) ← 0	Grouping: Description Note:	disables th Interrupt is	to interrupt e interrupt. disabled l	enable flag INTE, and
DWDT (Dis	sable WatchDog Timer)	1			
Instruction	D9	Number of words	Number of cycles	Flag CY	Skip condition
	10	1	1	_	-
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper	ation	
		Description		ruction after	timer function by the er executing the DWDT
EI (Enable	Interrupt)				
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	(INTE) ← 1	Grouping: Description Note:	enables the Interrupt is	interrupt e interrupt. s enabled b	ation enable flag INTE, and by executing the EI in- ng 1 machine cycle.
EPOF (Ena	able POF instruction)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 1 0 1 1 ₂ 0 5 _B	1	1	_	_
Operation:	POF instruction, POF2 instruction valid	Grouping: Description		immediate	after POF or POF2 in- executing the EPOF

IAK (Input	Accumulator from port K)				
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 1 1 1 1 ₂ 2 6 F ₁₆	words	cycles		
		1	1	_	-
Operation:	(A0) ← (K)	Grouping:	Input/Outp	ut operatio	า
•	$(A3-A1) \leftarrow 0$	Description			ts of port K to the bit 0
			(A ₀) of regi	ister A.	
		Note:			n is executed, "0" is rder 3 bits (A3–A1) of
IAP0 (Inpu	t Accumulator from port P0)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 0 2 2 6 0 16	words	cycles		
		1	1	_	_
Operation:	(A) ← (P0)	Grouping:	Input/Outp	ut operatio	า
•					port P0 to register A.
IAP1 (Inpu Instruction code	t Accumulator from port P1) D9 D0 1 0 0 1 1 0 0 0 0 1 2 2 6 1 16	Number of words	Number of cycles	Flag CY	Skip condition
0	(A) (D4)				
Operation:	(A) ← (P1)	Grouping:	Input/Outp		n port P1 to register A.
IAP2 (Innu	t Accumulator from port P2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 0 2 6 2	words	cycles		
	16	1	1	_	_
Operation:	$(A1, A0) \leftarrow (P21, P20)$	Grouping:	Input/Outp		
	$(A3, A2) \leftarrow 0$	Description			port P2 to the low-or-
		Note:		instructio	egister A. n is executed, "0" is er 2 bits (A3, A2) of reg-

ment register Y)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	_	(Y) = 0
$(Y) \leftarrow (Y) + 1$	Grouping:	RAM addre	esses	
	Description	sult of addi Y is 0, the the conter	ition, when next instru nts of regis	ts of register Y. As a re the contents of register action is skipped. Whe ter Y is not 0, the near d.
d n in Accumulator)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	_	Continuous description
$(A) \leftarrow n$	Grouping:		-	
		coded and struction	d executed is exec	etions are continuousl d, only the first LA in uted and other La ntinuously are skipped
Load register X and Y with x and y)	1	I	T=: 0\(\alpha\)	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	words	cycles	Flag CY	Skip condition
16	1	1	_	Continuous description
$(X) \leftarrow x x = 0 \text{ to } 15$	Grouping:			
$(Y) \leftarrow y \ y = 0 \text{ to } 15$	Description	register X, field to reg are contine the first L other LXY	and the volister Y. Whously coo XY instruction	the immediate field to alue y in the immediate en the LXY instruction led and executed, onle ction is executed and ans coded continuously
register Z with z)				
D9 D0 0 1 0 0 1 0 21 20 0 4 8	Number of words	Number of cycles	Flag CY	Skip condition
T T T T T T T T T T T T T T T T T T T	1	1	_	_
$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping: Description			the immediate field to
	D9	Do	Do	Ds

Peration)									1			
		0 0	0		0	0	10	7	Number of words	Number of cycles	Flag CY	Skip condition
	1010				2 🗀			∐ 16	1	1	_	-
(PC) ← (PC) + 1									Grouping:	Other oper	ation	
out port K from	Accumu	lator)										
D9 1 0 0 0	0 1		1	D0	2 2	1	F	7,0	Number of words	Number of cycles	Flag CY	Skip condition
					2		-	16	1	1	_	-
(K) ← (A0)									Grouping:	Input/Outp	ut operatio	n
									Description			of bit 0 (Ao) of registe
	m Accui	nulato	or)						1		I	
	1 0	0 0		$\overline{}$	2	2		7	Number of words	Number of cycles	Flag CY	Skip condition
1 0 0 0	1110	0 0			2			_ 16	1	1	-	-
(P0) ← (A)									Grouping:	Input/Outp	ut operatio	n
									Description	: Outputs th	e contents	of register A to port PC
· · ·	m Accui	nulato	or)						.	Nimaliana	FI 0)/	01:
	1 0	0 0			2	7	1	٦	words	cycles	Flag CY	Skip condition
	1110			'	2		<u> </u>	16	1	1	-	-
(P1) ← (A)									Grouping: Description			
	D9 O O O O (PC) ← (PC) + 1 D9 1 O O O (K) ← (AO) tput port PO fro D9 1 O O O (PO) ← (A)	D9 O O O O O O O O (PC) \leftarrow (PC) + 1 D9 1 O O O O O O O (K) \leftarrow (A0) tput port P0 from Accur D9 1 O O O I O (P0) \leftarrow (A)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D9 O O O O O O O O O	D9	D9	D9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Do	Do	De

OP2A (Out	tput port P2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 0 0 1 0 2 2 2 2 16	1	1	_	_
Operation:	(P21, P20) ← (A1, A0)	Grouping: Description	Input/Outp	-	n of the low-order 2 bits
		J 5000 I Priori	(A1, A0) of		
OR (logica	I OR between accumulator and memory)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 0 0 1 2 0 1 9 16	1	1	-	-
Operation:	$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic		
		Description	tents of r	egister A	tion between the con- and the contents of e result in register A.
POF (Power	er OFf1) D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 2	words 1	cycles 1	_	
Operation:	RAM back-up	Grouping:	Other oper	ration	
	However, voltage drop detection circuit valid	Description	executing ing the EP However,	the POF ir OF instruc	RAM back-up state by struction after execution. edrop detection circuit
		Note:	executing	this instruc	n is not executed before ction, this instruction is instruction.
POF2 (Pov	•	T		I	
Instruction code	D9 D0 0 0 0 0 1 0 0 0 0 8 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	RAM back-up	Grouping: Description	executing ecuting the	ystem in F the POF2 EPOF ins	RAM back-up state by 2 instruction after ex- struction. Operations of
		Note:	fore exe	Finstructicuting the	ped. on is not executed be- is instruction, this ent to the NOP instruc-

RAR (Rota	te Accumulator Right)			_	
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 1 ₂ 0 1 D ₁₆	1	cycles 1	0/1	_
Operation:	\rightarrow CY \rightarrow A3A2A1A0 \uparrow	Grouping:	Arithmetic	operation	
Operation.	——————————————————————————————————————				ntents of register A in
		Description			of carry flag CY to th
RB j (Rese	et Bit)				
Instruction	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	on	
	j = 0 to 3	Description			ts of bit j (bit specified e immediate field) o
RC (Reset	Carry flag) D9 D0 0 0 0 0 0 0 0 1 1 0 0 0 6 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	0	_
Operation:	$(CY) \leftarrow 0$	Grouping:	Arithmetic		
RCP (Rese	et Port C)	Joseph Park	: Clears (0)		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 0 0 ₂ 2 8 C ₁₆	1	1	_	_
Operation:	(C) ← 0	Grouping:	Input/Outp	ut operation	.
Operation:	(○) ← 0		: Clears (0)		I

RD (Reset	•	PCCIIIC	Ju Dy	, 166	jiole		<u>'</u>	D.					Number	Numberst	Flor CV	Chin on alltina	
Instruction code	D9 0	0 0	0	1	0	1	0	D ₀	Γ	0	1	4 16	Number of words	Number of cycles	Flag CY	Skip condition	
	<u> </u>	1 5 5		1 '		•			2 L		- 1	16	1	1	-	-	
Operation:	(D(Y)) +	- 0											Grouping:	Input/Outp	ut operatio	n	
- por uno	Howeve												Description			rt D specified by registe	
	(Y) = 0.1	0 3												Y.			
													Note:			r Y because port D	
														four ports		above are set to regi	
													When values except above are set to require ter Y, this instruction is equivalent to NOP instruction.				
RT (ReTuri	n from s	ubrout	ine)														
Instruction	D9							D ₀					Number of	Number of	Flag CY	Skip condition	
code	0 0	0 1	0	0	0	1	0	0	, [0	4	4 16	words	cycles			
									2 L			10	1	2	_	_	
Operation:	(PC) ←	, ,	, ,										Grouping:	Return ope	ration		
	$(SP) \leftarrow$	(SP) – ´	1										Description: Returns from subroutine to the routine called				
														the subrou	tine.		
		nterru	ot)					Do					Number of	Number of	Flor CV	Chin condition	
Instruction	D9							D ₀					Number of words	Number of cycles	Flag CY	Skip condition	
		nterrup 0 1		0	0	1	1	D ₀	2	0	4	6 16	Number of words	Number of cycles	Flag CY	Skip condition	
Instruction code	D9 0	0 1	0	0	0	1	1		2	0	4	6 16	words 1	cycles 1	_	Skip condition	
Instruction code	D9 0 0 (PC) ←	0 1 (SK(SP	0	0	0	1	1		2	0	4	6 16	words 1 Grouping:	cycles 1 Return ope	- eration	-	
Instruction code	D9 0	0 1 (SK(SP	0	0	0	1	1		2	0	4	6 16	words 1	cycles 1 Return ope	- eration om interru	Skip condition - upt service routine t	
Instruction code	D9 0 0 (PC) ←	0 1 (SK(SP	0	0	0	1	1		2	0	4	6 16	words 1 Grouping:	cycles 1 Return ope Returns fr main routin	ration om interru	upt service routine t	
Instruction code	D9 0 0 (PC) ←	0 1 (SK(SP	0	0	0	1	1		2	0	4	6 16	words 1 Grouping:	cycles 1 Return ope Returns fr main routin Returns ea	eration om interru ne. ich value o	upt service routine t	
Instruction code	D9 0 0 (PC) ←	0 1 (SK(SP	0	0	0	1	1		2	0	4	6 16	words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag,	ration om interrue. ich value o	upt service routine t f data pointer (X, Y, Z s, NOP mode status b	
Instruction code	D9 0 0 (PC) ←	0 1 (SK(SP	0	0	0	1	1		2	0	4	6 16	words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu	eration om interrule. ich value o skip status ous descri	upt service routine t f data pointer (X, Y, Z i, NOP mode status b ption of the LA/LXY ir	
Instruction code	D9 0 0 (PC) ←	0 1 (SK(SP	0	0	0	1	1		2	0	4	6 16	words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu	eration om interru e. ich value o skip status ous descri	upt service routine t f data pointer (X, Y, Z i, NOP mode status b ption of the LA/LXY ir and register B to th	
Instruction code Operation:	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP (SP) –	0)))				1		2	0	4	6 16	words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu struction,	eration om interru e. ich value o skip status ous descri	upt service routine t f data pointer (X, Y, Z i, NOP mode status b ption of the LA/LXY ir and register B to th	
Instruction code Operation:	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP (SP) –	0)))				1		2	0	4	6 16	words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just	eration om interru e. ich value o skip status ous descri	upt service routine t f data pointer (X, Y, Z i, NOP mode status b ption of the LA/LXY ir and register B to th	
Instruction code Operation:	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP (SP) –	0))) 1				0	0		0	4	5	words 1 Grouping: Description	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just	eration om interru ee. och value o skip status ous descri register A before inte	upt service routine to f data pointer (X, Y, Z is, NOP mode status be ption of the LA/LXY in and register B to the trupt.	
Instruction code Operation: RTS (ReTuInstruction	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0))) 1	and	d Sk	ip)		Do				6 ₁₆	words 1 Grouping: Description	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just	eration om interru ee. och value o skip status ous descri register A before inte	upt service routine to f data pointer (X, Y, Z is, NOP mode status be ption of the LA/LXY in and register B to the trupt.	
Instruction code Operation: RTS (ReTuInstruction code	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0 utine	and	d Sk	ip)		Do				5	words 1 Grouping: Description: Number of words 1	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just Number of cycles 2	eration om interrule. Inch value of skip status ous descrifegister A before inte	upt service routine to f data pointer (X, Y, Z, NOP mode status be ption of the LA/LXY in and register B to the trupt.	
Instruction code Operation: RTS (ReTulinstruction code	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0 utine	and	d Sk	ip)		Do				5	words 1 Grouping: Description: Number of words	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just Number of cycles 2 Return ope	e. sch value of skip status ous descripted inte	upt service routine to f data pointer (X, Y, Z, NOP mode status be ption of the LA/LXY in and register B to the trupt.	
Instruction code Operation: RTS (ReTulinstruction code	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0 utine	and	d Sk	ip)		Do				5	words 1 Grouping: Description: Number of words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just Number of cycles 2 Return ope Returns fro	eration om interrue. Inch value of skip status described eragister A before inte	upt service routine to f data pointer (X, Y, Z, NOP mode status be ption of the LA/LXY in and register B to the trupt. Skip condition Skip at uncondition	
Instruction code Operation: RTS (ReTulinstruction code	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0 utine	and	d Sk	ip)		Do				5	words 1 Grouping: Description: Number of words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just Number of cycles 2 Return ope Returns fro	ration om interrule. Inch value of skip status descripted interested A before interest	upt service routine to f data pointer (X, Y, Z, NOP mode status be ption of the LA/LXY in and register B to the trupt. Skip condition Skip at uncondition ne to the routine calle	
Operation: RTS (ReTuInstruction	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0 utine	and	d Sk	ip)		Do				5	words 1 Grouping: Description: Number of words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just Number of cycles 2 Return ope Returns fro the subrout	ration om interrule. Inch value of skip status descripted interested A before interest	upt service routine to f data pointer (X, Y, Z, NOP mode status be ption of the LA/LXY in and register B to the trupt. Skip condition Skip at uncondition ne to the routine calle	
Instruction code Operation: RTS (ReTulinstruction code	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0 utine	and	d Sk	ip)		Do				5	words 1 Grouping: Description: Number of words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just Number of cycles 2 Return ope Returns fro the subrout	ration om interrule. Inch value of skip status descripted interested A before interest	upt service routine to f data pointer (X, Y, Z, NOP mode status be ption of the LA/LXY in and register B to the trupt. Skip condition Skip at uncondition ne to the routine calle	
Instruction code Operation: RTS (ReTulinstruction code	D9 0 0 (PC) ← (SP) ←	0 1 (SK(SP(SP) – 1	0 utine	and	d Sk	ip)		Do				5	words 1 Grouping: Description: Number of words 1 Grouping:	Return ope Returns fr main routin Returns ea carry flag, the continu struction, states just Number of cycles 2 Return ope Returns fro the subrout	ration om interrule. Inch value of skip status descripted interested A before interest	upt service routine to f data pointer (X, Y, Z, NOP mode status be ption of the LA/LXY in and register B to the trupt. Skip condition Skip at uncondition ne to the routine calle	

SB j (Set B	in	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	19 0 .	
	0 0 0 0 10 110 116	1	1	_	_
Operation:	(Mj(DP)) ← 0	Grouping:	Bit operation	n On	
	j = 0 to 3	Description			of bit j (bit specified by
			the value j	in the imm	ediate field) of M(DP).
SC (Set Ca	urry flag)	I			_
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 1 1 1 1 2	1	1	1	_
Operation:	(CY) ← 1	Grouping:	Arithmetic	operation	
		Description	: Sets (1) to	carry flag (CY.
SCP (Set Finstruction code	Port C) D9	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(C) ← 1	Grouping:	Input/Outp	ut operatio	า
		Description	: Sets (1) to	port C.	
	rt D specified by register Y)	1			
Instruction code	D9 D0 0 0 0 1 0 1 0 1 0 1 5 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 3$	Grouping: Description Note:	Set 0 to 3 four ports (a bit of port I to registe (D0–D3). es except instruction	D specified by register Y. r Y because port D is above are set to regis- n is equivalent to the

SEA n (Ski	p Equal, Accumulator with immediate data n)						
Instruction code	D9 D0 0 0 1 0 0 1 0 1 0 2 5 46	Number of words	Number of cycles	Flag CY	Skip condition		
		2	2	-	(A) = n		
	0 0 0 1 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso	n operatio	n		
Operation:	(A) = n? n = 0 to 15	Description	of register mediate fie Executes t	A is equal eld. he next ins gister A is r	tion when the content to the value n in the im struction when the con not equal to the value		
SEAM (Ski	p Equal, Accumulator with Memory)						
Instruction	D9 D0 0 0 1 0 0 1 1 0 0 2 6 46	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	_	(A) = (M(DP))		
Operation:	(A) = (M(DP))?	Grouping:	Compariso	n operatio	n		
		Description	of registe M(DP). Executes t	r A is equ he next ins egister A	etion when the content all to the contents of struction when the con is not equal to the		
SNZ0 (Skip	if Non Zero condition of external 0 interrupt request	flag)					
Instruction code	D9 D0 0 0 1 1 1 0 0 0 0 3 8	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	V10 = 0: (EXF0) = 1		
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping: Interrupt operation					
	After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Description	os the next instruction rupt request flag EXFC clears (0) to the EXFC flag is "0," executes the nstruction is equivalen n.				
SNZAD (SI	kip if Non Zero condition of A/D conversion completi	on flag)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 1 0 0 0 0 1 1 1 1 2 2 8 7	1	1	_	V22 = 0: (ADF) = 1		
Operation:	V22 = 0: (ADF) = 1 ? After skipping, (ADF) \leftarrow 0 V22 = 1: SNZAD = NOP (V22 : bit 2 of the interrupt control register V2)	Grouping: Description:	when A/D is "1." Afte flag. When next instru	= 0 : Skip conversion r skipping the ADF f ction. = 1 : This i	os the next instruction of completion flag ADF clears (0) to the ADF lag is "0," executes the instruction is equivalen		

011201 (0	kip if Non Zero condition of Port C)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 1 0 0 1 2 2 8 9 16	words 1	cycles 1	_	(C) = 1
Operation:	(C) = 1 ?	Grouping:	Input/Outp	ut operatio	n
Operation.	(0) = 1 :	Description			tion when the contents
		Description	of port C is		Mon whom the contents
			•		struction when the con-
			tents of po		
SNZIO (Sk	p if Non Zero condition of external 0 Interrupt input p	in)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 0 1 0 0 3 A	words	cycles		
	0 0 0 0 1 1 1 0 1 0 2	1	1	_	l12 = 0 : (INT) = "L" l12 = 1 : (INT) = "H"
Operation:	I12 = 0 : (INT) = "L" ?	Grouping:	Interrupt or		
	I12 = 1 : (INT) = "H" ?	Description			s the next instruction
	(I12: bit 2 of the interrupt control register I1)				pin is "L." Executes the
			next instru "H."	ction wher	n the level of INT pin is
				= 1 · Skir	s the next instruction
					T pin is "H." Execute:
					hen the level of INT pir
			is "L."		·
SNZP (Ski	p if Non Zero condition of Power down flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 2 0 0 3	words	cycles		(=) ·
	·	1	1	_	(P) = 1
Operation:	(P) = 1 ?	Grouping:	Other oper	ation	
		Description		next instru	ction when the P flag is
			"1".		
				ping, the	P flag remains un
			changed.		
			ū		
			ū	the next i	nstruction when the F
SNZT1 (Sk	cip if Non Zero condition of Timer 1 inerrupt request f	lag)	Executes	the next in	nstruction when the F
SNZT1 (Sk Instruction code	D9 D0 1 0 0 0 0 0 0 2 8 0	lag) Number of words	Executes	Flag CY	Skip condition
Instruction		Number of	Executes flag is "0." Number of		
Instruction code	D9 D0 1 0 0 0 0 0 0 2 8 0	Number of words	Executes flag is "0." Number of cycles	Flag CY	Skip condition
Instruction	D9 D0 1 0 1 0 0 0 0 0 0 0 0 2 2 8 0 16	Number of words	Executes flag is "0." Number of cycles 1 Timer oper	Flag CY - ation	Skip condition V12 = 0: (T1F) = 1
Instruction code	D9 D0	Number of words 1 Grouping:	Executes flag is "0." Number of cycles 1 Timer oper: When V12	Flag CY ation = 0 : Ski	Skip condition V12 = 0: (T1F) = 1 os the next instruction
Instruction code	D9 D0 1 0 1 0 0 0 0 0 0 0 0 2 2 8 0 V12 = 0: (T1F) = 1? After skipping, (T1F) \leftarrow 0	Number of words 1 Grouping:	Executes flag is "0." Number of cycles 1 Timer oper: When V12 when time "1." After si	Flag CY ation = 0 : Skill r 1 interrukipping, cle	Skip condition V12 = 0: (T1F) = 1 os the next instruction of request flag T1F is ears (0) to the T1F flag
Instruction code	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	Executes flag is "0." Number of cycles 1 Timer oper: When V12 when time "1." After si	Flag CY ation = 0 : Skill r 1 interrukipping, cle	Skip condition V12 = 0: (T1F) = 1 os the next instruction of request flag T1F is ears (0) to the T1F flag
Instruction code	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	Executes flag is "0." Number of cycles 1 Timer oper: When V12 when time "1." After si When the instruction.	Flag CY ation = 0 : Skil r 1 interru kipping, cle	Skip condition V12 = 0: (T1F) = 1 os the next instruction opt request flag T1F is ears (0) to the T1F flag "0," executes the next instruction option of the table of the table of the table of
Instruction code	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	Executes flag is "0." Number of cycles 1 Timer oper: When V12 when time "1." After si When the instruction.	Flag CY ation = 0 : Skip r 1 interru kipping, cke T1F flag is = 1 : This i	Skip condition V12 = 0: (T1F) = 1 os the next instruction pt request flag T1F is ears (0) to the T1F flag "0," executes the nex instruction is equivalen

	ip if Non Zero condition of Timer 2 inerrupt request f	lag)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 1 2 8 1	words	cycles		
	16	1	1	_	V13 = 0: (T2F) = 1
Operation:	V13 = 0: (T2F) = 1 ?	Grouping:	Timer oper	ation	
•	After skipping, $(T2F) \leftarrow 0$	Description			s the next instruction
	V13 = 1: SNZT2 = NOP				pt request flag T2F is
	(V13 = bit 3 of interrupt control register V1)				ears (0) to the T2F flag.
	(vie bio o interrupt control register vi)				"0," executes the next
			instruction.	_	o, oncours in the
					nstruction is equivalent
			to the NOF		•
070 : (0) :	' 7 D'')				
	o if Zero, Bit)	.	Niverban of	FI 0)/	01: 15:
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code					(NA:(DD)) 0
		1	1	_	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mi/DD\) = 0.2	0	D'1		j = 0 to 3
Operation.	(Mj(DP)) = 0 ? j = 0 to 3	Grouping:	Bit operation		Consultant the contents
	J = 0 to 3	Description	•		tion when the contents
					by the value j in the im-
			mediate fie	, ,	,
					struction when the con-
			tents of bit	j of M(DP)	is "1."
SZC (Skip	if Zero, Carry flag)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 1 1 1 a 0 2 F	words	cycles		
	16	1	1	_	(CY) = 0
					(CY) = 0
Operation:	(CY) = 0 ?	Grouping:	Arithmetic		<u>, , , , , , , , , , , , , , , , , , , </u>
Operation:			Arithmetic : Skips the r	next instruc	ction when the contents
Operation:		Grouping:	Arithmetic : Skips the r of carry fla	next instructions of the second secon	tion when the contents
Operation:		Grouping:	Arithmetic : Skips the r of carry flac	next instructions of the second secon	ction when the contents
Operation:		Grouping:	Arithmetic : Skips the r of carry fla After skip changed.	next instructions of CY is "0." ping, the	ction when the contents CY flag remains un-
Operation:		Grouping:	Arithmetic Skips the r of carry fla After skip changed. Executes t	next instruction of the next i	ction when the contents CY flag remains unstruction when the con-
Operation:		Grouping:	Arithmetic : Skips the r of carry fla After skip changed.	next instruction of the next i	ction when the contents CY flag remains unstruction when the con-
	(CY) = 0 ?	Grouping:	Arithmetic Skips the r of carry fla After skip changed. Executes t	next instruction of the next i	ction when the contents CY flag remains unstruction when the con-
SZD (Skip	(CY) = 0 ? if Zero, port D specified by register Y)	Grouping: Description	Arithmetic Skips the r of carry fla After skip changed. Executes t tents of the	next instruction of the control of t	ction when the contents CY flag remains unstruction when the con-
	(CY) = 0 ?	Grouping: Description	Arithmetic Skips the r of carry fla After skip changed. Executes t tents of the	next instruction of the next i	ction when the contents CY flag remains unstruction when the con-
SZD (Skip	if Zero, port D specified by register Y) D9 D0 D0 D0 D0 D0 D2 4	Grouping: Description	Arithmetic Skips the r of carry fla After skip changed. Executes t tents of the	next instruction of the control of t	ction when the contents CY flag remains unstruction when the con- "1." Skip condition
SZD (Skip Instruction	if Zero, port D specified by register Y) D9 D0	Grouping: Description	Arithmetic Skips the r of carry fla After skip changed. Executes t tents of the	next instruction of the control of t	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0
SZD (Skip Instruction	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 2 0 2 4 16	Grouping: Description Number of words	Arithmetic Skips the r of carry flat After skip changed. Executes t tents of the Number of cycles	next instruction of the control of t	ction when the contents CY flag remains unstruction when the con- "1." Skip condition
SZD (Skip Instruction code	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 2 0 2 4 16 0 0 0 0 1 0 1 0 1 1 2 0 2 B 16	Description Number of words	Arithmetic Skips the r of carry fla After skip changed. Executes t tents of the Number of cycles 2	ext instruction of the second	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0 (Y) = 0 to 3
SZD (Skip Instruction	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0	Orouping: Number of words 2 Grouping:	Arithmetic Skips the r of carry fla After skip changed. Executes t tents of the Number of cycles 2	ext instruction of the second	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0 (Y) = 0 to 3
SZD (Skip Instruction code	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 2 0 2 4 16 0 0 0 0 1 0 1 0 1 1 2 0 2 B 16	Description Number of words	Arithmetic Skips the r of carry flath After skip changed. Executes to tents of the strength of cycles Number of cycles 2 Input/Outp Skips the r	pext instruction of the control of t	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0 (Y) = 0 to 3
SZD (Skip Instruction code	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0	Orouping: Number of words 2 Grouping:	Arithmetic Skips the r of carry flath After skiph changed. Executes the tents of the strength of cycles Input/Outp Skips the respecified to specified to skips the respective of the strength of the strengt	ext instruction of the second	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0 (Y) = 0 to 3
SZD (Skip Instruction code	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0	Orouping: Number of words 2 Grouping:	Arithmetic Skips the r of carry flat After skip changed. Executes t tents of the Number of cycles 2 Input/Outp Skips the r specified to next instruct	ext instruction of the second	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0 (Y) = 0 to 3 Intion when a bit of port D Y is "0." Executes the the bit is "1."
SZD (Skip Instruction code	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0	Number of words 2 Grouping: Description	Arithmetic Skips the r of carry flath After skip changed. Executes to tents of the strength of cycles Input/Outp Skips the respecified to next instructions.	ext instruction of the control of th	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0 (Y) = 0 to 3 Intion when a bit of port D Y is "0." Executes the the bit is "1." EY because port D is
SZD (Skip Instruction code	(CY) = 0 ? if Zero, port D specified by register Y) D9 D0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0	Number of words 2 Grouping: Description	Arithmetic Skips the r of carry flath After skip changed. Executes to tents of the strength of cycles Input/Outp Skips the respecified to next instructions of the strength	ext instruction of the control of th	ction when the contents CY flag remains unstruction when the con- "1." Skip condition (D(Y)) = 0 (Y) = 0 to 3 Intion when a bit of port D Y is "0." Executes the

T1AB (Trai	nsfer data to timer 1 and register R1 from Accumulat	or and regis	ster B)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 0 2 3 0	words	cycles		
	16	1	1	-	_
Operation:	(T17–T14) ← (B)	Grouping:	Timer oper	ation	
operation.	$(R17-R14) \leftarrow (B)$	Description			ts of register B to the
	$(T13-T10) \leftarrow (A)$	2000			imer 1 and timer 1 re-
	$(R13-R10) \leftarrow (A)$		-		nsfers the contents of
	(K13-K10) (- (A)		-		order 4 bits of timer 1
			and timer 1		
T2AB (Trai	nsfer data to timer 2 and register R2 from Accumulat	or and regis	ster B)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 1 2 2 3 1 16	words	cycles		
		1	1	_	
Operation:	$(T27\text{-}T24) \leftarrow (B)$	Grouping:	Timer oper		
	$(R27-R24) \leftarrow (B)$	Description			ts of register B to the
	$(T23-T20) \leftarrow (A)$		-		mer 2 and timer 2 re-
	$(R23-R20) \leftarrow (A)$		-		nsfers the contents of
			_		order 4 bits of timer 2
			and timer 2	reload reg	jister R2.
	sfer data to Accumulator from register B)	T		I =	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 ₂ 0 1 E ₁₆	1	1		
		'	'	_	
Operation:	$(A) \leftarrow (B)$	Grouping:	Other oper	ation	
		Description	: Transfers t ter A.	he content	s of register B to regis-
TAB1 (Trar	nsfer data to Accumulator and register B from timer 1)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 0 2 2 7 0 16	1	1	_	-
Operation:	(B) ← (T17–T14)	Crauning	Timer oper	otion	
Operation.	$(A) \leftarrow (T17-T14)$ $(A) \leftarrow (T13-T10)$	Grouping: Description			der 4 bits (T17–T14) of
	(A) ← (113–110)	Description	timer 1 to r	-	uei 4 bits (117–114) bi
				the low-ord	der 4 bits (T13–T10) of

	nsfer data to Accumulator and register B from timer 2	í — — —			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 2 7 1 16	words 1	cycles 1	_	_
Operation:	$(B) \leftarrow (T27 - T24)$	Grouping:	Timer oper		
	$(A) \leftarrow (T23 - T20)$	Description		-	der 4 bits (T27–T24) of
			timer 2 to r	J	
			timer 2 to r		der 4 bits (T23-T20) of
TABAD (Tr	ransfer data to Accumulator and register B from regis	ter AD)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 1 0 0 1 2 7 9	words	cycles		
	16	1	1	_	-
Operation:	In A/D conversion mode (Q13 = 0),	Grouping:	A/D conve	rsion opera	ation
орогино	(B) ← (AD9–AD6)	Description	: In the A/D	conversion	mode (Q13 = 0), trans-
	$(A) \leftarrow (AD5-AD2)$				its (AD9-AD6) of register
	In comparator mode (Q13 = 1),		-		the middle-order 4 bits
	$(B) \leftarrow (AD7\text{-}AD4)$		` ,	•	AD to register A. In the
	$(A) \leftarrow (AD3-AD0)$				3 = 1), transfers the high-i) of comparator register
	(Q13: bit 3 of A/D control register Q1)				low-order 4 bits (AD3–
			_		gister to register A.
TABE (Tra	nsfer data to Accumulator and register B from register	er E)	,	•	<u> </u>
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0 ₂ 0 2 A ₁₆	words	cycles		
		1	1	_	-
Operation:	(B) ← (E7–E4)	Grouping:	Register to	register tra	ansfer
	$(A) \leftarrow (E3-E0)$	Description	: Transfers	the high-o	rder 4 bits (E7-E4) of
			-	_	B, and low-order 4 bits
			of register	E to registe	er A.
TARP n /T	ransfer data to Accumulator and register B from Proc	ram memo	ry in nage	n)	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 4 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	words	cycles	l lag 01	Only condition
	0 0 1 0 0 p4 p3 p2 p1 p0 2 0 +p p 16	1	3	_	-
	(SP) ← (SP) + 1	Grouping:	Arithmetic	operation	<u>l</u>
Operation:		Description			o register B and bits 3 to
Operation:	$(SK(SP)) \leftarrow (PC)$		() to registe	er A. These	bits 7 to 0 are the ROM
Operation:	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$				
Operation:	(PCH) ← p		pattern in	ad-dress (
Operation:		Note:	pattern in A0)2 specifi	ad-dress (ied by regis	sters A and D in page p.
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:	pattern in a A0)2 specifi p is 0 to 19 for M34501	ad-dress (ied by regis 5 for M345 IM4/E4.	sters A and D in page p. 601M2, and p is 0 to 31
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$	Note:	pattern in a A0)2 specifi p is 0 to 19 for M34501 When this	ad-dress (ied by regis 5 for M345 M4/E4. instruction	DR2 DR1 DR0 A3 A2 A1 sters A and D in page p. 601M2, and p is 0 to 31 is executed, be careful to be because 1 stage of

TAD (Trans	sfer data to Accumulator from register D)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 1 0 0 5 1	words	cycles		·
	16	1	1	-	_
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	Register to	register tra	ansfer
•	(A3) ← 0				its of register D to the
		_			Ao) of register A.
		Note:			on is executed, "0" is) of register A.
TADAB (Tr	ransfer data to register AD from Accumulator from re	 gister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 1 0 0 1 2 2 3 9 16	words	cycles	i lag o i	
		1	1	-	
Operation:	$(AD7-AD4) \leftarrow (B)$	Grouping:	A/D conve		
	(AD3–AD0) ← (A)	Description	struction is In the com fers the o high-order register, a the low-ord tor register	equivalent nparator m contents 4 bits (AD nd the cor der 4 bits (A	mode (Q13 = 0), this into the NOP instruction. tode (Q13 = 1), transof register B to the v7–AD4) of comparator neets of register A to AD3–AD0) of compara-ontrol register Q1)
TAI1 (Tran	sfer data to Accumulator from register I1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 1 2 2 5 3	1	1	_	-
Operation:	(A) ← (I1)	Grouping:	Interrupt o	peration	
		Description	: Transfers register I1		nts of interrupt control A.
TAK0 (Trai	nsfer data to Accumulator from register K0)	•			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 0 1 0 2 2 5 6 16	1	1	_	_
Operation:	(A) ← (K0)	Grouping:	Input/Outp	ut operatio	in
				the conte	nts of key-on wakeup

	nsfer data t	.o Accui	nuia	וטו ווכ	וווו וווע	egisi	eir	(1)								
Instruction	D9					D ₀					Number of	Number of	Flag CY	Skip condition		
code	1 0 0	1 0	1	1 0	0	1	2 2	2	5	9 16	words 1	cycles 1				
											ı	ı	_	_		
Operation:	$(A) \leftarrow (K1)$										Grouping:	Input/Outp				
											Description	: Transfers	the conte	nts of key-on wakeup		
												control reg	noter it it	register 7.		
TAK2 (Tra	nsfer data t	o Accur	mula	tor fro	om re	egist	er K	(2)								
Instruction	D 9					D ₀					Number of	Number of	Flag CY	Skip condition		
code	1 0 0	1 0	1	1 0	1	0	, 2	2	5	A 16	words	cycles				
											1	1	-	_		
Operation:	$(A) \leftarrow (K2)$										Grouping:	Input/Outp	ut operation	n		
											Description	: Transfers control reg		nts of key-on wakeup register A.		
TALA (Trainstruction code	D9 1 0 0		mulat 0	1 0		D ₀	er L		4	9 16	Number of words	Number of cycles	Flag CY	Skip condition		
Operation:	(A3, A2) ← ((AD1, AD0	n)								Grouping:	A/D conve	rsion opera	ation		
орогинот:	$(A_1, A_0) \leftarrow (A_1, A_0)$		·)								Grouping: A/D conversion operation Description: Transfers the low-order 2 bits (AD1, AD0) o					
	, ,													gh-order 2 bits (A3, A2		
												of register				
											Note:			n is executed, "0" is der 2 bits (A1, A0) o		
TAM j (Tra	nsfer data t	o Accur	mula	tor fro	m N	1emc	ry)									
Instruction	D9	1 0	0	j j	T :	Do j	2 2	,	С	j ,,	Number of words	Number of cycles	Flag CY	Skip condition		
		1,10	1 • 1	1 1	J	J	2 L		0	 16	1	1	_	_		
Operation:	$(A) \leftarrow (M(D$	P))									Grouping:	RAM to reg	gister trans	fer		
	$(X) \leftarrow (X)EX$ j = 0 to 15	$(X) \leftarrow (X)EXOR(j)$							Description: After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value just the immediate field, and stores the result is register X.							

IAWIN (IIIa	Insfer data to Accumulator from register MR)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 1 0 2 5 2	words	cycles		
	16	1	1	-	_
Operation:	$(A) \leftarrow (MR)$	Grouping:	Other oper	ation	
оролишен.	(*) (***				ts of clock control reg-
			ister MR to	register A	
TAQ1 (Trai	nsfer data to Accumulator from register Q1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A) ← (Q1)	Grouping:	A/D conve	rsion opera	ation
				he conten	ts of A/D control regis-
TASP (Trail	nsfer data to Accumulator from Stack Pointer) D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 0 0 2 0 5 0	words 1	cycles 1	_	_
		1	1		
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	1 Grouping:	1 Register to		
		1 Grouping:	1 Register to Transfers t	he content	ts of stack pointer (SP)
	$(A2-A0) \leftarrow (SP2-SP0)$	1 Grouping:	Register to: Transfers to the low-After this	he content order 3 bits instructio	
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	1 Grouping: Description	Register to: Transfers to the low-After this	he content order 3 bits instructio	ts of stack pointer (SP) s (A2–A0) of register A n is executed, "0" is
Operation: TAV1 (Transfunction	$(A2-A0) \leftarrow (SP2-SP0)$ $(A3) \leftarrow 0$ nsfer data to Accumulator from register V1)	1 Grouping: Description	Register to: Transfers to the low-After this	he content order 3 bits instructio	ts of stack pointer (SP) s (A2–A0) of register A n is executed, "0" is
Operation:	(A2–A0) ← (SP2–SP0) (A3) ← 0	1 Grouping: Description Note:	Register to: Transfers t to the low-After this stored to the	he content order 3 bits instructio ne bit 3 (As	ts of stack pointer (SP s (A2–A0) of register A n is executed, "0" is s) of register A.
TAV1 (Transtruction code	$(A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1 Grouping: Description Note: Number of words 1	Register to : Transfers t to the low- After this stored to th	he content order 3 bits instructio ne bit 3 (A3	ts of stack pointer (SP)s (A2–A0) of register An is executed, "0" is of register A.
Operation: TAV1 (Transfunction	$(A2-A0) \leftarrow (SP2-SP0)$ $(A3) \leftarrow 0$	1 Grouping: Description Note: Number of words 1 Grouping:	Register to : Transfers t to the low- After this stored to th Number of cycles 1 Interrupt or	he content order 3 bits instructio ne bit 3 (As Flag CY	ts of stack pointer (SP is (A2–A0) of register A in is executed, "0" is so of register A. Skip condition — hts of interrupt controls
TAV1 (Transtruction code	$(A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1 Grouping: Description Note: Number of words 1 Grouping:	Register to : Transfers t to the low- After this stored to th Number of cycles 1 Interrupt op : Transfers	he content order 3 bits instructio ne bit 3 (As Flag CY	ts of stack pointer (SP is (A2–A0) of register A in is executed, "0" is so of register A. Skip condition — hts of interrupt controls

WACHINE	E INSTRUCTIONS (INDEX BY ALPHABET)	Contini	ueu)		
TAV2 (Tran	nsfer data to Accumulator from register V2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 1 2 0 5 5	words	cycles		
		1	1	_	_
Operation:	(A) ← (V2)	Grouping:	Interrupt o	peration	
	() () ()				nts of interrupt control
			register V2		
TAW1 (Tra	nsfer data to Accumulator from register W1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 1 1 ₂ 2 4 B ₁₆	words	cycles		
		1	1	_	_
Operation:	(A) ← (W1)	Grouping:	Timor onor	otion	
ороганот	(',', ()	Description	Timer oper		ts of timer control reg-
			ister W1 to		_
				J	
TAW2 (Trai	nsfer data to Accumulator from register W2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 1 0 0 1 1 0 0 ₂ 2 4 C ₁₆	words	cycles		
	10	1	1	_	-
Operation:	(A) ← (W2)	Grouping:	Timer oper	ation	
орегиноп.	(1) \ (\vec{vv2})	Description			s of timer control regis-
			ter W2 to re		S .
	nsfer data to Accumulator from register W6)	1	1	1 1	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 0 0 2 2 5 0 16		-		
		1	1	_	_
Operation:	(A) ← (W6)	Grouping:	Timer oper	ation	
•		Description			s of timer control regis-
			ter W6 to re		-

sfer data	to A	CCUM	ulate	or fro	m re	nist	er)	۲)						
D9						Do			_		Number of words	Number of cycles	Flag CY	Skip condition
0 0	0	1 0	1	0	0 1	0	<u></u> 2	0	5	16	1	1	_	-
(A) ← (X	<)										Grouping:	Register to	register tr	ansfer
	,													ts of register X to reg
fer data	to A	ccum	ulate	or fro	m re	aiste	er \	<u>()</u>						
D9			1			Do			1	F	Number of words	Number of cycles	Flag CY	Skip condition
							」 2			16	1	1	_	_
(A) ← (\	<u>()</u>										Grouping:	Register to	register tr	ansfer
											Description	ter A.	the content	s of register Y to regis
D9		ccumi	ulato			Do		() O	5	3 16	Number of words	Number of cycles	Flag CY	Skip condition
											Į.	ļ	_	
		, Zo)									Grouping: Description Note:	: Transfers low-order 2 After this	the conter 2 bits (A1, <i>i</i> instructio	nts of register Z to the
sfer data	to re	egiste	r B f	rom .	4ccu	mula	ato	r)						
D9						Do)				Number of	Number of	Flag CY	Skip condition
0 0	0	0 0	0	1	1 1	0	_2	0	0	E 16	1	1	_	_
(B) ← (A	1)										Grouping: Description			ansfer s of register A to regis
	D9	D9 $ \begin{array}{ c c c c c c } \hline O & O & O \\ \hline O & O$	D9 O O O I O O (A) \leftarrow (X) Sefer data to Accuming D9 O O O O O O (A) \leftarrow (Y) Sefer data to Accuming D9 O O O I O O (A1, A0) \leftarrow (Z1, Z0) (A3, A2) \leftarrow O Sefer data to register D9 O O O O O O	D9 O O O O O O O O O O O O O O O O O O O	D9	D9 O O O O O O O O O O O O O O O O O O O	Efer data to Accumulator from registroma. (A) \leftarrow (X) Sefer data to Accumulator from registroma. (A) \leftarrow (Y) Sefer data to Accumulator from registroma. (A) \leftarrow (Y) Sefer data to Accumulator from registroma. (A) \leftarrow (Y) Sefer data to Accumulator from registroma. (A1, A0) \leftarrow (Z1, Z0) (A3, A2) \leftarrow 0 Sefer data to register B from Accumulator. (A1, A0) \leftarrow (Z1, Z0) (A3, A2) \leftarrow 0	Effer data to Accumulator from register No. (A) \leftarrow (X) Sefer data to Accumulator from register No. (A) \leftarrow (Y) Sefer data to Accumulator from register Z D9 D0 (A) \leftarrow (Y) Sefer data to Accumulator from register Z D9 D0 0 0 0 1 0 1 0 1 0 0 1 1 2 (A1, A0) \leftarrow (Z1, Z0) (A3, A2) \leftarrow 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Do	

TDA (Trans	sfer data to register D from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 2 0 2 9	1	1	_	_
Operation:	(DR2−DR0) ← (A2−A0)	Grouping:	Register to	register tr	ansfer
		Description	: Transfers	the conter	nts of the low-order 3 er A to register D.
TEAR (Tra	nsfer data to register E from Accumulator and regist	er R)			
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$	Grouping: Description	high-order the conten	the conten 4 bits (E3-	ts of register B to the -Eo) of register E, and er A to the low-order 4
TI1A (Trans	sfer data to register I1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 0 1 1 1 1 2 2 1 7 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(I1) ← (A)	Grouping:	Interrupt or	peration	
Operation		Description	: Transfers t		s of register A to inter-
TK0A (Trai	nsfer data to register K0 from Accumulator)				
Instruction	D9 D0 1 1 0 1 1 0 2 1 B 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(K0) \leftarrow (A)$	Grouping: Description			of register A to key-on

TK1A (Tra	nsfer data to register K1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 0 2 2 1 4	words 1	cycles 1	_	_
Operation:	$(K1) \leftarrow (A)$	Grouping:	Input/Outp		
		Description	on wakeup		ts of register A to key gister K1.
TK2A (Tra	nsfer data to register K2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(K2) ← (A)	Grouping:	Input/Outp	ut operation	on .
		Description	on wakeup		ts of register A to key- gister K2.
TMA j (Trai	nsfer data to Memory from Accumulator) D9 D0 1 0 1 0 1 1 j j j j 2 2 B j 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1		_
Operation:	$(M(DP)) \leftarrow (A)$	Grouping:	RAM to reg		
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Description	M(DP), an formed bet	exclusive ween regis	contents of register A to OR operation is per- ster X and the value j in and stores the result in
TMRA (Tra	nsfer data to register MR from Accumulator)				
Instruction code	D9 D0 1 0 1 1 0 2 1 6 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	$(MR) \leftarrow (A)$	Grouping: Description	Other oper: Transfers t control regi	he conten	s of register A to clock

TPU0A (Tr	ansfer dat	a to regi	ister	<u>PU0 t</u>	rom	Accu	mula	ator)					
Instruction	D9					D ₀				Number of	Number of	Flag CY	Skip condition
code	1 0 0	0 1	0	1 1	0	1 2	2	2	D 16	words 1	cycles 1	_	_
										'	'		
Operation:	$(PU0) \leftarrow (A)$	4)								Grouping:	Input/Outp		
										Description	up control		ts of register A to pu IO.
TPU1A (Tr	ansfer data	a to reg	ister	PU1 f	rom	Accu	mula	ator)					
Instruction code	D9		0	1 1	1	D ₀	2		E]16	Number of words	Number of cycles	Flag CY	Skip condition
						2			16	1	1	_	_
Operation:	(PU1) ← (<i>i</i>	4)								Grouping: Description	Input/Outp : Transfers up control	the conten	ts of register A to pu
TPU2A (Tr	ansfer data	to regi	ster F	PU2 fr	om A		nula	tor)		Number of	Number of	Flog CV	Skip condition
code	1 0 0	0 1	0	1 1	1	D ₀	2	2 1	F 16	words	cycles	Flag CY	- Skip condition
	(5115) (4												
Operation:	$(PU2) \leftarrow (P)$	١)								Grouping: Description	Input/Output		of register A to pull-
										·	control reg		ŭ i
TQ1A (Tra		to regist	er Q	1 from	Acc		ator)					
Instruction code	D9 1 0 0	0 0	0	0 1	0	D ₀	2	0 4	4 4	Number of words	Number of cycles	Flag CY	Skip condition
	1. 0 0	1010	1 " 1	<u> </u>	1 "	2			16	1	1	-	_
Operation:	(Q1) ← (A)									Grouping:	A/D conve	rsion opera	tion
	,										: Transfers	the conten	ts of register A to A

TR1AB (Tr	ansfer data to register R1 from Accumulator and reg	gister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 1 1 1 1 2 2 3 F	words	cycles		
	16	1	1	-	-
Operation:	(R17–R14) ← (B)	Grouping:	Timer oper	ation	
	$(R13-R10) \leftarrow (A)$				ts of register B to the
					7-R14) of reload regis-
					nts of register A to the
					–R10) of reload regis-
TV1A (Tran	nsfer data to register V1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 1 ₂ 0 3 F ₁₆	words	cycles		
	10	1	1	-	
Operation:	$(V1) \leftarrow (A)$	Grouping:	Interrupt o	peration	
		Description	: Transfers t	he content	s of register A to inter-
			rupt contro	l register \	′ 1.
TV2A (Trar	nsfer data to register V2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	0 0 0 0 1 1 1 1 0 2 0 3 1 16	1	1	-	-
Operation:	(V2) ← (A)	Grouping:	Interrupt or		
		Description			s of register A to inter-
			rupt contro	I register V	2.
TW1A (Tra	nsfer data to register W1 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 0 ₂ 2 0 E ₁₆	1	1	_	-
Operation:	(W1) ← (A)	Grouping:	Timer oper	ation	
Operation.	$(W1) \leftarrow (A)$	Description		the content	s of register A to timer

TW2A (Tra	nsfer (lata t			N2 fr	om A						(contine			
Instruction	D9	iata t	o rogii	, , , , , , , , , , , , , , , , , , ,	VVZ 111	01117	D		ilate	<i>/</i> 1/		Number of	Number of	Flag CY	Skip condition
code	1 (0	0 0	0	1 1	1 1	1		2	0 F	=],,	words	cycles		·
								2			16	1	1	-	-
Operation:	(W2) ·	- (A)										Grouping:	Timer ope	ration	
•	()													the content	s of register A to timer
TW6A (Tra	nsfer o	lata t	o reai:	ster '	W6 fr	om A	Accı	umu	ılato	or)					
Instruction	D9		0 0			0 1	D	0	2		3 16	Number of words	Number of cycles	Flag CY	Skip condition
		0		'		<u> </u>	'	2		' '	16	1	1	_	-
Operation:	(W6)	- (A)										Grouping:	Timer ope	ration	
												Description	: Transfers control reg		s of register A to timer
TYA (Trans	sfer da	a to ı	egiste	r Y f	rom A	ccu	mul	ator	r)						
Instruction code	D9	0	0 0	0	1 /	1 0	D 0 0	\neg	0	0 (2 16	Number of words	Number of cycles	Flag CY	Skip condition
				1 -	-			2			16	1	1	_	_
Operation:	(Y) ←	(A)										Grouping:	Register to	register tra	ansfer
												Description	: Transfers t ter Y.	he content	s of register A to regis-
WRST (Wa	atchdo	j time	r ReS	eT)											
Instruction	D9) 1	0 1	0	0 (0 0	D 0 0	\neg	2	A (\Box	Number of words	Number of cycles	Flag CY	Skip condition
		' '	0 1	10	0 0) 0	,	2		A C	16	1	1	-	(WDF1) = 1
Operation:	(WDF After s	,	? g, (WD	=1) ←	- 0							Grouping: Description	timer flag \(\) (0) to the \(\) is "0," exestops the \(\)	next instru WDF1 is "1 WDF1 flag cutes the watchdog t e WRST ir	action when watchdog "After skipping, clears When the WDF1 flag next instruction. Also, mer function when ex- astruction immediately action.

	change Accumulator and Memory data)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 1 0 1 j j j ₂ 2 D _{j 16}	1	1	_	-
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Description	with the co OR operat ter X and t	ontents of r ion is perf he value j	ne contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X.
XAMD j (e.	Xchange Accumulator and Memory data and Decrer	nent registe	er Y and sk	(ip)	
Instruction code	D9 D0 1 1 1 1 1 j j j j 2 F j 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	(Y) = 15
Operation:	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \longleftrightarrow (Y) - 1$	Grouping: Description	with the co OR operat ter X and t and stores Subtracts As a resul tents of reg is skipped.	anging the ntents of raion is performed by the result of from the table of subtragister Y is the the table of subtragister Y is the the	ifer ie contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction contents of register Y struction is executed.
XAMI j (eX	change Accumulator and Memory data and Increment	nt register \	Y and skip)		
Instruction code	D9 D0 1 1 1 1 0 j j j 2 E j 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(Y) = 0
Operation:	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$	Grouping: Description	with the co OR operat ter X and t and stores Adds 1 to t sult of addi Y is 0, the	anging the ntents of raion is performed by the value jubble the result he content tion, when next instructs of regis	e contents of M(DP) egister A, an exclusive ormed between regisin the immediate field, in register X. s of register Y. As a rethe contents of register ction is skipped. When ter Y is not 0, the next

MACHINE INSTRUCTIONS (INDEX BY TYPES)

NACTI	INE INST	1110		. 10	143						1 -	-3)					
Parameter						In	stru	ction	cod	е					er of ds	er of es	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexa no	ade otati		Number of words	Number of cycles	Fulction
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	(A) ← (B)
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
transfer	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
egister 1	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
to re	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Register to register transfer	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ (A2-A0) \leftarrow (DR2-DR0) $ $ (A3) \leftarrow 0 $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	(A2–A0) ← (SP2–SP0) (A3) ← 0
	LXY x, y	1	1	Х3	X 2	X1	X 0	уз	y 2	у1	у0	3	х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
sesse.	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
transfer	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAI	XAMI j	1	0	1	1	1	0	j	j	j	j	2	Е	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	_	Transfers the contents of register B to the high-order 4 bits (E3–E0) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
-	-	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
-	_	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.
-	_	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.
-	_	Transfers the contents of register X to register A.
-	_	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	_	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	_	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
-	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. when the contents of register Y is not 0, the next instruction is executed.
-	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

Parameter	INE INS								cod			-0,			of	je .	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀			cimal	Number of words	Number of cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	0	p4	рз	p2	p1	p0	0	8 +I	p D	1	3	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
	АМ	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
ration	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
Arit	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit o	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0 n	1 n	0 n	1 n			5 n	2	2	(A) = n ? n = 0 to 15

Note : p is 0 to 15 for M34501M2, p is 0 to 31 for M34501M4/E4.

Carry flag CY	Datailed description
_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
_	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
1	Sets (1) to carry flag CY.
0	Clears (0) to carry flag CY.
_	Skips the next instruction when the contents of carry flag CY is "0."
_	Stores the one's complement for register A's contents in register A.
0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.
	- 0/1 - 1 0 - 0/1 0/1

Parameter						In	stru	ction	cod	le						er of Is	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	-		lecir atior	nal	Number of words	Number of cycles	Function
	Ва	0	1	1	a 6	a 5	a 4	аз	a2	a1	ao	1		a a		1	1	(PCL) ← a6–a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	р1	po	0		p p		2	2	(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	0	0	a 6	a 5	a4	аз	a2	a1	ao	2	а	а				
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0		2	2	(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	0	0	p4	0	0	рз	p2	р1	po	2	р	р				(, , , , , , , , , , , , , , , , , , ,
	ВМ а	0	1	0	a 6	a 5	a4	a 3	a 2	a 1	a 0	1	а	а		1	1	(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← 2 (PCL) ← a6–a0
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	р1	po	0		; р		2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine (1	0	0	a 6	a 5	a 4	аз	a2	a 1	ao	2	а	а				(PCL) ← a6–a0
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0		2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
		1	0	0	p4	0	0	рз	p2	p1	po	2	р	р				(PCh) ← p (Note) (PCL) ← (DR2–DR0,A3–A0)
	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6		1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4		1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1
Retui	RTS	0	0	0	1	0	0	0	1	0	1	0	4	- 5		1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1

Note : p is 0 to 15 for M34501M2, p is 0 to 31 for M34501M4/E4.

Skip condition	Carry flag CY	Datailed description
_	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
_		Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
_		Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
_		Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Parameter	г					In	stru	ction	cod	le					er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal	Number words	Number of cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
ation	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	I12 = 0 : (INT) = "L" ?
Interrupt operation																	I12 = 1 : (INT) = "H" ?
ntern	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
_	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	(A) ← (I1)
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Ε	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
Timer operation	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(T17-T14) \leftarrow (B)$ $(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$ $(R13-R10) \leftarrow (A)$
Timer	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(T27-T24) \leftarrow (B)$ $(R27-R24) \leftarrow (B)$ $(T23-T20) \leftarrow (A)$ $(R23-R20) \leftarrow (A)$
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17-R14) ← (B) (R13-R10) ← (A)
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1: SNZT1 = NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 1: SNZT2 = NOP

Skip condition	Carry flag CY	Datailed description
-	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	-	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "L" However, I12 = 0	_	When I12 = 0: Skips the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H."
(INT) = "H" However, I12 = 1		When I12 = 1: Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." (I12: bit 2 of interrupt control register I1)
_	_	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
_	_	Transfers the contents of interrupt control register V2 to register A.
-	_	Transfers the contents of register A to interrupt control register V2.
-	_	Transfers the contents of interrupt control register I1 to register A.
-	_	Transfers the contents of register A to interrupt control register I1.
_	-	Transfers the contents of timer control register W1 to register A.
_	_	Transfers the contents of register A to timer control register W1.
-	_	Transfers the contents of timer control register W2 to register A.
-	_	Transfers the contents of register A to timer control register W2.
-	_	Transfers the contents of timer control register W6 to register A.
-	_	Transfers the contents of register A to timer control register W6.
-	_	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	_	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	_	Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.
V12 = 0: (T1F) = 1	_	When V12 = 0 : Skips the next instruction when timer 1 interrupt request flag T1F is "1." After skipping, clears (0) to the T1F flag. When the T1F flag is "0," executes the next instruction. When V12 = 1 : This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	-	When V13 = 0 : Skips the next instruction when timer 1 interrupt request flag T2F is "1." After skipping, clears (0) to the T2F flag. When the T2F flag is "0," executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)

Parameter						In	stru	ctior	coc	le		Hexadecimal Number of Vocles Overles							
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex no	ade otat	cimal on	Number of words	Number of cycles	Function		
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)		
	ОР0А	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)		
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)		
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)		
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A_1, A_0) \leftarrow (P2_1, P2_0)$ $(A_3, A_2) \leftarrow 0$		
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P21, P20) ← (A1, A0)		
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1		
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 3		
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 3$		
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0?		
		0	0	0	0	1	0	1	0	1	1	0	2	В			(Y) = 0 to 3		
_	SCP	4	0	4	0	0	0	4	4	0	4	,	0	D	4	_	(0) . 1		
eratio	RCP	1	0	1	0	0	0	1	1	0	1		8		1		$(C) \leftarrow 1$ $(C) \leftarrow 0$		
nt op	SNZCP	1	0	1	0	0	0	1	0	0	1		8		1		(C) = 1?		
Outp	014201	•	O	•	O	Ü	O	•	Ü	Ü	•	_	Ü	J			(0) = 1.		
Input/Output operation	IAK	1	0	0	1	1	0	1	1	1	1	2	6	F	1	1	$ (A0) \leftarrow (K) (A3-A1) \leftarrow 0 $		
	ОКА	1	0	0	0	0	1	1	1	1	1	2	1	F	1	1	$(K) \leftarrow (A_0)$		
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)		
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)		
	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)		
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)		
	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)		
	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	(A) ← (K2)		
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)		
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	(PU1) ← (A)		
	TPU2A	1	0	0	0	1	0	1	1	1	1	2	2	F	1	1	(PU2) ← (A)		

		1
Skip condition	Carry flag CY	Datailed description
-	_	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the low-order 2 bits (A1, A0) of register A.
_	_	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P2.
_	_	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y.
_	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0? (Y) = 0 to 3	-	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_	_	Sets (1) to port C.
_	_	Clears (0) to port C.
(C) = 1	-	Skips the next instruction when the contents of port C is "1." Executes the next instruction when the contents of port C is "0."
_	_	Transfers the contents of port K to the bit 0 (A ₀) of register A.
_	_	Outputs the contents of bit 0 (A ₀) of register A to port K.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of register A to pull-up control register PU1.
_	-	Transfers the contents of register A to pull-up control register PU2.

T T			RUCTIONS (INDEX BY TYPES								-0)	''	-	T	leu)		
Parameter						Ir	stru	ction	cod	e					er of	er of les	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal ion	Number words	Number of cycles	Tullcaon
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	In A/D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)
tion	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	$(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$
A/D conversion operation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	$ \begin{array}{c} (AD7\text{-}AD4) \leftarrow (B) \\ (AD3\text{-}AD0) \leftarrow (A) \end{array} $
conve	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	(A) ← (Q1)
ΑP	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	$(Q1) \leftarrow (A)$
	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	(ADF) ← 0 Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting
	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0 V22 = 1: SNZAD = NOP
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	RAM back-up However, voltage drop detection circuit is valid
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	RAM back-up
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF or POF2 instruction valid
operation	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
er ope	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
Other	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1, after skipping, (WDF1) ← 0
	смск	1	0	1	0	0	1	1	0	1	0	2	9	Α	1	1	Ceramic resonator selected
	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillation selected
	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	(MR) ← (A)

Skip condition	Carry flag CY	Datailed description
-	_	In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the high-order 4 bits (AD7–AD4) of comparator register to register B, and the low-order 4 bits (AD3–AD0) of comparator register to register A. (Q13: bit 3 of A/D control register Q1)
-	_	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.
-	_	In the A/D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)
_	_	Transfers the contents of A/D control register Q1 to register A.
-	_	Transfers the contents of register A to A/D control register Q1.
_	_	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1	_	When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. When V22 = 1 : This instruction is equivalent to the NOP instruction. (V22: bit 2 of interrupt control register V2)
_	_	No operation; Adds 1 to program counter value, and others remain unchanged.
_	_	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. However, the voltage drop detection circuit is valid.
_	_	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction. Operations of all functions are stopped.
-	_	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0."
_	_	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
(WDF1) = 1	_	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. When the WDF1 flag is "0," executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
_	_	Selects the ceramic resonance circuit and stops the on-chip oscillator.
_	_	Selects the RC oscillation circuit and stops the on-chip oscillator.
_	_	Transfers the contents of clock control register MR to register A.
_	_	Transfers the contents of register A to clock control register MR.

INSTRUCTION CODE TABLE

<u> </u>	1100	1101	COL	<u>/L /</u>	ADLE														
1	D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	011000 011111
D3-D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16*	_	_	BML	BML*	BL	BL*	ВМ	В
0001	1	_	CLD	SZB 1	_	_	TAD	A 1	LA 1	TABP 1	TABP 17*	_	_	BML	BML*	BL	BL*	ВМ	В
0010	2	POF	_	SZB 2	_	_	TAX	A 2	LA 2	TABP 2	TABP 18*	_	_	BML	BML*	BL	BL*	ВМ	В
0011	3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19*	_	_	BML	BML*	BL	BL*	вм	В
0100	4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20*	_	_	BML	BML*	BL	BL*	ВМ	В
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21*	_	_	BML	BML*	BL	BL*	ВМ	В
0110	6	RC	_	SEAM	_	RTI	_	A 6	LA 6	TABP 6	TABP 22*	_	-	BML	BML*	BL	BL*	ВМ	В
0111	7	sc	DEY	_	_	_	_	A 7	LA 7	TABP 7	TABP 23*	_	_	BML	BML*	BL	BL*	ВМ	В
1000	8	POF2	AND	_	SNZ0	LZ 0	_	A 8	LA 8	TABP 8	TABP 24*	_	_	BML	BML*	BL	BL*	ВМ	В
1001	9	-	OR	TDA	_	LZ 1	-	A 9	LA 9	TABP 9	TABP 25*	_	_	BML	BML*	BL	BL*	ВМ	В
1010	Α	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26*	_	_	BML	BML*	BL	BL*	ВМ	В
1011	В	AMC	_	_	_	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27*	_	-	BML	BML*	BL	BL*	ВМ	В
1100	С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28*	_	_	BML	BML*	BL	BL*	ВМ	В
1101	D	_	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29*	_	-	BML	BML*	BL	BL*	ВМ	В
1110	Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30*	_	-	BML	BML*	BL	BL*	ВМ	В
1111	F	_	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31*		_	BML	BML*	BL	BL*	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	pppp
BMLA	10	0p00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

• * cannot be used in the M34501M2-XXXFP.

INSTRUCTION CODE TABLE (continued)

			-	<u> </u>	'ULL	(COII	una	,u,										
	09–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	-	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	_	OP1A	T2AB	_	_	IAP1	TAB2	SNZT2	_	_	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	-	OP2A	-	_	TAMR	IAP2	_	-	_	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	TW6A	_	-	_	TAI1	-	_	_	_	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	_	_	TAQ1	_	-	_	-	_	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	_	TK2A		_	_	_	-	_	-	_	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	_	TMRA	_	_	_	TAK0	_	_	-	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A	-	_	_	_	-	_	SNZAD	_	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	_	-		_	_	_	-	_		_	-	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	-	-	_	TADAB	TALA	TAK1	1	TABAD	SNZCP	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	_	_	_	_	_	TAK2	_	_	_	смск	-	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	-	TK0A	-	_	TAW1	ı	Í	Í	-	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	_	_	_	_	TAW2	_	_	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	ı	ı	TPU0A	_	-	ı	_	Í	SCP	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	E	TW1A	ı	TPU1A	_	_	_	_	_	_	_	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	ОКА	TPU2A	TR1AB	_	_	IAK	_	_	ADST	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

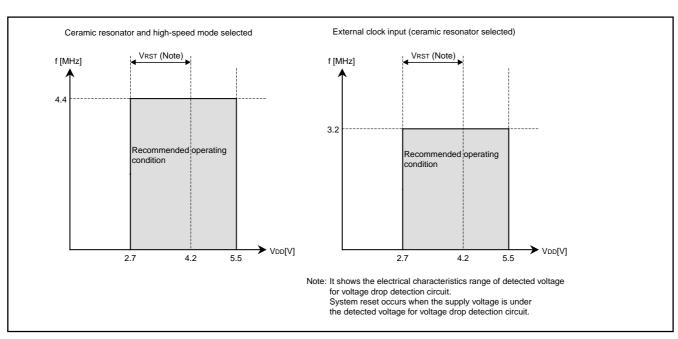
The codes for the second word of a two-word instruction are described below.

	The	second	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	pppp
BMLA	10	0p00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

Electrical characteristics

Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage P0, P1, P2, D2/C, D3/K, RESET, XIN		-0.3 to VDD+0.3	V
Vı	Input voltage Do, D1		-0.3 to 13.0	V
Vı	Input voltage AIN0-AIN1		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D2/C, D3/K, RESET		-0.3 to VDD+0.3	V
Vo	Output voltage Do, D1	Output transistors in cut-off state	-0.3 to 13.0	V
Vo	Output voltage XouT		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C



Recommended operating conditions 1(Ta = -20 °C to 85 °C, VDD = 2.7 to 5.5 V, unless otherwise noted)

C. mala al	Danamatan	Conditi		Limits					
Symbol	Parameter	Conditi	ons	Min.	Тур.	Max.	Unit		
Vdd	Supply voltage	High-speed mode	f(XIN) ≤ 4.4 MHz	2.7		5.5	V		
		Middle-speed mode		(Note 1)					
		Low-speed mode							
		Default mode							
VRAM	RAM back-up voltage	(at RAM back-up mode	e with the POF2	1.8 (Note 2)			V		
		instruction)							
Vss	Supply voltage				0		V		
VIH	"H" level input voltage	P0, P1, P2, D2, D3, XIN		0.8VDD		VDD	V		
VIH	"H" level input voltage	D0, D1		0.8VDD		12	V		
VIH	"H" level input voltage	RESET		0.85VDD		VDD	V		
VIH	"H" level input voltage	C, K	VDD = 4.0 to 5.5 V	0.5VDD		VDD	V		
			VDD = 2.7 to 5.5 V	0.7Vdd		VDD	V		
VIH	"H" level input voltage	CNTR, INT		0.85VDD		VDD	V		
VIL	"L" level input voltage	P0, P1, P2, D0-D3, XIN		0		0.2VDD	V		
VIL	"L" level input voltage	C, K		0		0.16VDD]		
VIL	"L" level input voltage	RESET		0		0.3VDD	V		
VIL	"L" level input voltage	CNTR, INT		0		0.15VDD			
IOL(peak)	"L" level peak output current	P2, RESET	VDD = 5.0 V			10	mA		
IoL(peak)	"L" level peak output current	D0, D1	VDD = 5.0 V			40	mA		
IoL(peak)	"L" level peak output current	D2/C, D3/K	VDD = 5.0 V			24	mA		
IoL(peak)	"L" level peak output current	P0, P1	VDD = 5.0 V			24	mA		
IoL(avg)	"L" level average output current	P2, RESET (Note 3)	VDD = 5.0 V			5.0	mA		
IoL(avg)	"L" level average output current	Do, D1 (Note 3)	VDD = 5.0 V			30	mA		
IoL(avg)	"L" level average output current	D ₂ /C, D ₃ /K (Note 3)	VDD = 5.0 V			15	mA		
IoL(avg)	"L" level average output current	P0, P1 (Note 3)	VDD = 5.0 V			12	mA		
ΣloL(avg)	"L" level total average current	P2, D, RESET				80	mA		
		P0, P1				80	mA		

Notes 1: System is in the reset state when the value is the detection voltage of the voltage drop detection circuit or less.

3: The average output current (IOH, IOL) is the average value during 100 ms.

^{2:} The voltage drop detection circuit is operating in the RAM back-up with the POF instruction (system enters into the reset state when the value is VRST or less). In the RAM back-up mode with the POF2 instruction, the voltage drop detection circuit stops.

Recommended operating conditions 2

(Ta = -20 °C to 85 °C, VDD = 2.7 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditi	one		Unit		
Cyllibol	raiailletei	Conditi	UIIS	Min.	Тур.	Max.	Offic
f(XIN)	Oscillation frequency	High-speed mode				4.4	MHz
	(with a ceramic resonator/	Middle-speed mode					
	RC oscillation) (Note)	Low-speed mode					
		Default mode					
f(XIN)	Oscillation frequency	High-speed mode				3.2	MHz
	(with a ceramic resonator selected,	Middle-speed mode					
	external clock input)	Low-speed mode					
		Default mode					
Δ f(XIN)	Oscillation frequency error	VDD = 5.0 V ±10 %,				±17	%
((at RC oscillation, error value of	Ta = 25 °C, -20 to 85 °C					
	exteranal R, C not included)						
	Note: use 30 pF capacitor and vary external R						
f(CNTR)	Timer external input frequency	High-speed mode				f(XIN)/6	Hz
		Middle-speed mode				f(XIN)/12	
		Low-speed mode				f(XIN)/24	
		Default mode				f(XIN)/48	
tw(CNTR)	Timer external input period	High-speed mode		3/f(XIN)			s
	("H" and "L" pulse width)	Middle-speed mode		6/f(XIN)			
		Low-speed mode		12/f(XIN)			
		Default mode		24/f(XIN)			
TPON	Valid supply voltage rising time for	$VDD = 0 \rightarrow 2.0 \text{ V}$				100	μs
	power-on reset circuit						

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

Electrical characteristics (Ta = -20 °C to 85 °C, VDD = 2.7 to 5.5 V, unless otherwise noted)

Symbol		Parameter	Toot oo	nditions	Limits			Unit
Symbol	'	arameter	lest co	nullions	Min.	Тур.	Max.	Offic
Vol	"L" level output voltage P0, P1		VDD = 5.0 V	IOL = 12 mA			2.0	V
				IOL = 4.0 mA			0.9	
Vol	"L" level output v	voltage P2, RESET	VDD = 5.0 V	IOL = 5.0 mA			2.0	V
				IOL = 1.0 mA			0.6	
VoL	"L" level output v	voltage Do, D1	VDD = 5.0 V	IOL = 30 mA			2.0	V
				IOL = 10 mA			0.9	
Vol	"L" level output v	voltage D2/C, D3/K	VDD = 5.0 V	IOL = 15 mA			2.0	V
				IOL = 5.0 mA			0.9	
lін	"H" level input co	urrent	VI = VDD				1.0	μΑ
	P0, P1, P2, D2/0	C, D ₃ /K, RESET						
IIН	"H" level input co	urrent Do, D1	VI = 12 V				1.0	μΑ
IIL	"L" level input cu	ırrent P0, P1, P2	VI = 0 V P0, P1, P2 No	oull-up	-1.0			μΑ
IIL	"L" level input cu	ırrent	VI = 0 V, D2/C, D3/K, No pull-up		-1.0			μΑ
	Do, D1, D2/C, D3	3/K						
IDD	Supply current	at active mode	VDD = 5.0 V	High-speed mode		1.7	5.0	mA
		(Notes 1, 2)	f(XIN) = 4.0 MHz	Middle-speed mode		1.3	3.9	
				Low-speed mode		1.1	3.3	
				Default mode		1.0	3.0	
		at RAM back-up mode	VDD = 5.0 V			50	100	μΑ
		(POF instruction execution)						
		at RAM back-up mode	Ta = 25 °C			0.1	1.0	μΑ
		(POF2 instruction execution)	VDD = 5.0 V				10	
			VDD = 3.0 V				6.0	
Rpu	Pull-up resistor value		VI = 0 V, VDD = 5.0 V		30	60	150	kΩ
	P0, P1, P2, D2/0	C, D ₃ /K, RESET						
VT+ - VT-	Hysteresis INT,	CNTR	VDD = 5.0 V			0.25		V
VT+ - VT-	Hysteresis RESET		VDD = 5.0 V			1.2		V
f(RING)	On-chip oscillato	r clock frequency (Note 3)	VDD = 5.0 V	VDD = 5.0 V			3.0	MHz

Notes 1: The operation current of the voltage drop detection circuit is included.

^{2:} When the A/D converter is used, the A/D operation current (IADD) is included.

^{3:} When system operates by the on-chip oscillator, the system clock frequency is the on-chip oscillator clock divided by the dividing ratio selected with register MR.

A/D converter recommended operating conditions

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter		onditions	Limits			Unit
Syllibol	Falametei	Conditions		Min.	Тур.	Max.	01111
Vdd	Supply voltage	Ta = 25 °C		2.7 (Note)		5.5	V
		Ta = -20 °C to 85 °C		3.0		5.5	V
VIA	Analog input voltage			0		VDD+2LSB	V
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 V	High-speed mode	0.1			MHz
			Middle-speed mode	0.2			MHz
			Low-speed mode	0.4			MHz
			Default mode	0.8			MHz

Note: System is in the reset state when the value is the detection voltage of the voltage drop detection circuit or less.

A/D converter characteristics

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Cumbal	Daramatar	Parameter Test conditions		Limits			Unit
Symbol	Parameter	16	rest conditions		Тур.	Max.	Offic
_	Resolution					10	bits
_	Linearity error	Ta = 25 °C, VDD =	2.7 to 5.5 V			±2.0	LSB
		Ta = -25 °C to 85	°C, VDD = 3.0 V to 5.5 V				
-	Differential non-linearity error	Ta = 25 °C, VDD =	2.7 to 5.5 V			±0.9	LSB
		Ta = -25 °C to 85	°C, VDD = 3.0 V to 5.5 V				
Vот	Zero transition voltage	VDD = 5.12 V		10	20	30	mV
VFST	Full-scale transition voltage	transition voltage VDD = 5.12 V		5115	5125	5135	mV
IADD	A/D operating current (Note 1)	VDD = 5.0 V	f(XIN) = 0.4 MHz to 4.0 MHz		0.3	0.9	mA
TCONV	A/D conversion time	f(XIN) = 4.0 MHz	High-speed mode			46.5	μs
			Middle-speed mode			93.0]
			Low-speed mode			186	1
			Default mode			372	1
_	Comparator resolution	Comparator mode				8	bits
_	Comparator error (Note 2)	VDD = 5.12 V				±20	mV
_	Comparator comparison time	f(XIN) = 4.0 MHz	High-speed mode			6.0	μs
			Middle-speed mode			12	1
			Low-speed mode			24	7
			Default mode			48	7

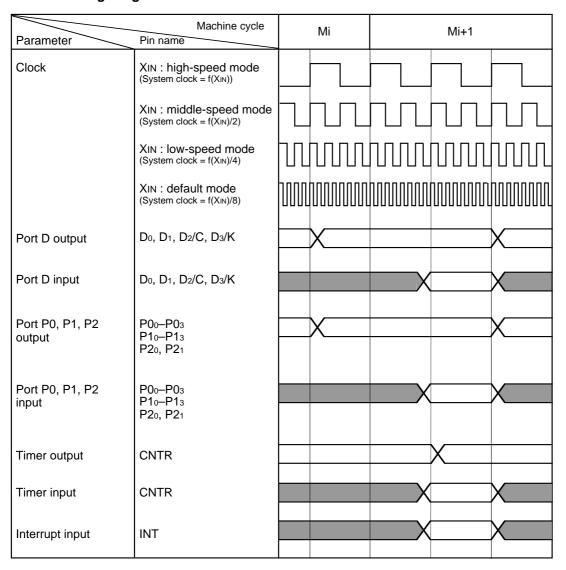
Notes 1: When the A/D converter is used, the IADD is included to IDD.

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

^{2:} As for the error from the logic value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage V_{ref} which is generated by the built-in DA converter can be obtained by the following formula.


Voltage drop detection circuit characteristics

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	rameter Test conditions		Limits	mits		
Syllibol	Farameter	rest conditions	rest conditions		Тур.	Max.	Unit
VRST	Detection valteurs (Nets 4)			2.7		4.2	V
VRSI	Detection voltage (Note 1)	Ta = 25 °C		3.3	3.5	3.7	
IRST	Operation current of voltage	RAM back-up mode	VDD = 5.0 V		50	100	μΑ
IKSI	drop detection circuit	(POF instruction execution) (Note 2)					

Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs while the supply voltage (VDD) is falling.

Basic timing diagram

^{2:} The voltage drop detection circuit is operating in the RAM back-up with the POF instruction (It stops in the RAM back-up with the POF2 instruction).

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4501 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 20 shows the product of built-in PROM version. Figure 56 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 20 Product of built-in PROM version

Part number	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34501E4FP	4096 words	256 words	PRSP0020DA-A	One Time PROM [shipped in blank]

(1) PROM mode

The 4501 Group has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM to "H" after connecting wires as shown in Figure 56 and powering on the VDD pin, and then applying 12 V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Use the special-perpose serial programmer when performing serial read/program.

As for the serial programmer for the single-chip microcomputer (serial programmer and control software), refer to the "Renesas Microcomputer Development Support Tools" Hompage (http://www.renesas.com/en/tools).

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 55 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

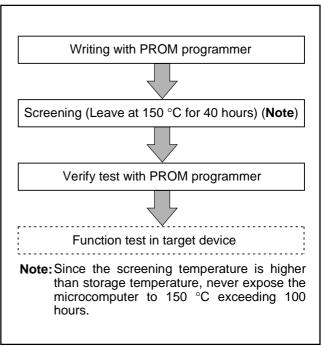


Fig. 55 Flow of writing and test of the product shipped in blank

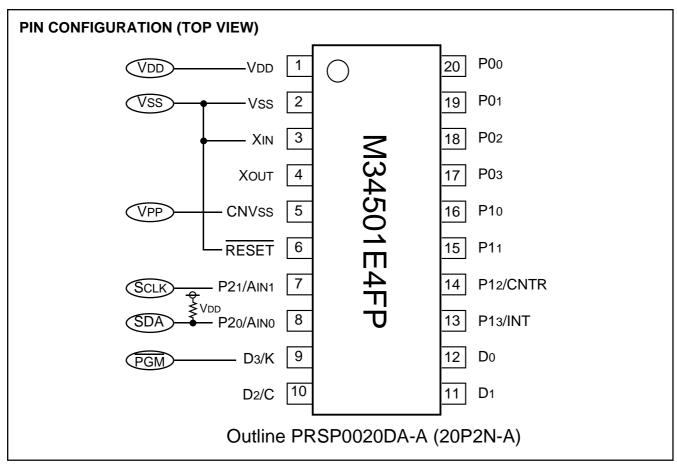
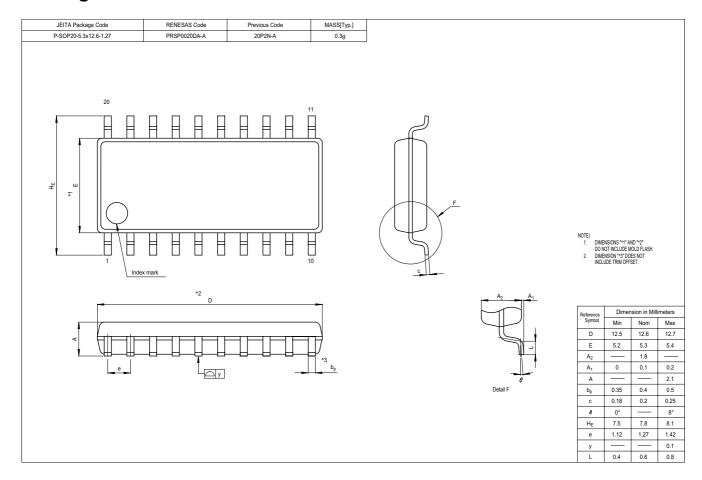



Fig. 56 Pin configuration of built-in PROM version

Package outline

REVISION DESCRIPTION LIST

4501 GROUP DATA SHEET

Rev. No.		Revision Description	Rev. date		
1.0	First Editio	n	000711		
1.1	Page 5:	Input/Output ports; Description of AINO-AIN3 added.			
	Page 25:	Fig.18 to Fig. 20; Description of "X" revised.			
	Page 33:	(2) Successive comparison register AD;			
	3.5	this instruction (error) → these instructions (correct)			
	Page 42:	Table 16; Return condition of port P13/INT revised			
		bit 1 (error) → bit 2 (correct), EXF1 (error) → EXF0 (correct)			
	Pages 49 t	o 51: Fig. 46 to Fig. 49; Description of "X" revised.			
	Page 73:	SEAM; Instruction code $0000\underline{01}0110$ (error) $\rightarrow 0000\underline{10}0110$ (correct)			
	Page 80:	Description AD3, AD2 (error) → A3, A2 (correct)			
	Page 88:	WRST;			
		Operation: (WDF) \leq 1? (error) \rightarrow (WDF <u>1</u>) \equiv 1? (correct)			
		Description:			
		Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears			
		(0) to the WDF1 flag. When the WDF1 flag is "Q," executes the next instruction			
	Page 91:	Description of DEY; "Subtracts 1 from the contents of register Y." added.			
	Page 93:	Description of SEAM and description of SEA n are exchanged.			
	Page 100:	WRST;			
		$(WDF1) \leftarrow 0, \qquad (WDF1) = 1,$			
		after skipping, \rightarrow after skipping,			
		$(WDF1) \leftarrow \underline{1} \qquad \qquad (WDF1) \leftarrow \underline{0}$			
		(error) (correct)			
	Page 101:				
		Skip condition: (WDF) = 1 (error) \rightarrow (WDF <u>1</u>) = 1 (correct)			
		Description:			
		Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears			
	D 140	(0) to the WDF1 flag. When the WDF1 flag is "0," executes the next instruction			
	Page 110:	(1) PROM mode; 12.5 V (error) → 12 V (correct)			
		Fig. 52; title revised			
1.2	Pages 3, 4	, 22 : Character fonts errors revised	000905		

REVISION DESCRIPTION LIST

4501 GROUP DATA SHEET

Rev. No.	Revision Description					
2.0	The 4501/4502 Group data sheet is separated.					
	Page 9: Port block diagram (3); Block diagram of P12/CNTR pin revised.					
	Page 25: Fig. 22 Timers structure; Block diagram of P12/CNTR pin revised.					
	Page 28: $(\underline{9})$ Precautions \rightarrow $(\underline{8})$ Precautions					
	(8) Timer input/output pin (P12/CNTR pin) added.					
	Fig. 23 added.					
	Page 29: WATCHDOG TIMER revised all.					
	Page 30: Fig. $2\underline{4} \rightarrow$ Fig. $2\underline{5}$, Fig. $2\underline{5} \rightarrow$ Fig. $2\underline{6}$					
	Fig. 26 NOP instruction added					
	Page 39: Fig. 37 Note 3 added.					
	Page 61: BL p, a, BLA p instructions revised.					
	Page 62: BML p, a, BMLA p instructions revised.					
	Page 76: TABP p instruction revised.					
	Page 90: TABP p instruction revised.					
	Page 92: BL p, a, BLA p, BML p, a, BMLA p instructions revised.					
	Page 100: BL, BML, BLA, BMLA instructions; The second word revised.					
	Page 101: BL, BML, BLA, BMLA instructions; The second word revised.					
	Page 102: ABSOLUTE MAXIMUM RATINGS; VDD -0.3 to $6.\underline{0} \rightarrow -0.3$ to $6.\underline{5}$					
	Page 103: RECOMMENDED OPERATING CONDITIONS 1;					
	VRST → 2.7					
	Note 1 revised.					
	Operating condition map added.					
	Page 104: RECOMMENDED OPERATING CONDITIONS 2; VRST $ ightarrow$ 2.7					
	Page 105: ELECTRICAL CHARACTERISTICS; VRST $ ightarrow$ 2.7					
	Page 106: A/D CONVERTER RECOMMENDED OPERATING CONDITIONS;					
	VDD (Ta = 25 °C) Min. VRST $ ightarrow$ 2.7, Note added					

REVISION HISTORY

4501 GROUP DATA SHEET

Rev.	Date		Description
		Page	Summary
3.00	Aug 27, 2004	All pages 4 5 25 26 30 31 32 41 52 78 101	Words standardized: On-chip oscillator, A/D converter Power dissipation "Ta=25°C" added. Description of RESET pin revised. Table 9 : Control register of timer 1 and timer 2 revised. Fig.22 : Note 5 added. Some description revised. Fig.25 : "Dl" instruction added. Table 11: Revised. Table 15 Port level and Note 4 revised, Note 6 added. © Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU, Note on Power Source Voltage added. TABAD : Description revised. TABAD : Description revised.
3.01	Feb 07, 2005	1 2 4 29 49 110 111 112	Package name revised. Package name revised. Package name revised. * Timer 1 and timer 2 count start timing and count time when operation starts added. * Timer 1 and timer 2 count start timing and count time when operation starts added. Package name revised. Package name revised. Package outline revised.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology
- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.

Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com